• Title/Summary/Keyword: Passive Solar System

Search Result 92, Processing Time 0.031 seconds

자연 에너지 이용과 환경건축을 위한 신기술

  • Lee, Gyeong-Hoe
    • Solar Energy
    • /
    • v.13 no.2_3
    • /
    • pp.107-119
    • /
    • 1993
  • This paper is to refine the concept of utilizing natural energy, and to introduce new technologies of building energy control. For the global environment protection, it is essential to turn attention to latent capacity of natural renewable energy. Especially the concept of 'Environmental Architecture' is very important from this viewpoint. This paper reviews many of new technologies for environmental architecture developed recently : TIM, high effective solar radiation control strategy of glazing, new passive cooling and heating system etc. The design application of the technology has been introduced.

  • PDF

A Study on Passive Solar Classroom Heating System (수동형 태양열 교실 난방장치에 관한 연구)

  • Park, Hi-Yong;Jung, Hai-Kwan
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.12 no.2
    • /
    • pp.71-80
    • /
    • 1983
  • The passive type solar energy heating system for the classroom was investigated. A classroom in a primary school located at Gangnam-ku, Seoul was taken as a model classroom the heat balance equation was established. The temperature in the classroom and solarium were calculated from the heat balance. at clear days, the temperature in the classroom and solarium were measured and compared with the calculated values. The calculated and measured values for the temperature agreed with, in general, in the increasing of $20\%$ range. It was found that the smaller size of solarium could Provide the increasing of energy efficiency for the classroom temperature.

  • PDF

Performance evaluation of bubble pump used on solar water heating system

  • Xuesong, Li;Park, Gi-Tae;Kim, Pil-Hwan;Chung, Han-Shik;Jeong, Hyo-Min
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.416-422
    • /
    • 2007
  • The application analysis of bubble pump on the domestic solar water heater system is presented. The system investigated in this study is a passive device, self pumping and self regulating. It was test to use the bubble pump on solar water heater system. The test experiment has been taken on the existed vacuum tube about the efficiency, working fluid temperature and pressure and circulated power. In order to check the working temperature and working pressure effectively, the bubble pump was test separated from the solar water heater. The equipment consists of the bubble pump, heater and heat exchanger. The main structure of bubble pump was design depend on the character of two phase flow. The complete system was instrumented to measure pressures, temperatures and their relationship with the solar radiation intensity. The theory analysis of design bubble pump has been given and the experiment result analysis has been included in the paper.

  • PDF

A Study on the Passive Vibration Control of Large Scale Solar Array with High Damping Yoke Structure (고댐핑 요크 구조 적용 대형 태양전지판의 수동형 제진에 관한 연구)

  • Park, Jae-Hyeon;Park, Yeon-Hyeok;Park, Sung-Woo;Kang, Soo-Jin;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.5
    • /
    • pp.1-7
    • /
    • 2022
  • Recently, satellites equipped with high-performance electronics have required higher power consumption because of the advancement of satellite missions. For this reason, the size of the solar panel is gradually increasing to meet the required power budget. Increasing the size and weight of the solar panel is one of the factors that induce the elastic vibration of the flexible solar panel during the highly agile maneuvering of the satellite or the mode of vibration coupling to the satellite or the mode of vibration coupling to the micro-jitter from the on-board appendages. Previously, an additional damper system was applied to reduce the elastic vibration of the solar panel, but the increase in size and mass of system was inevitable. In this study, to overcome the abovementioned limitations, we proposed a high -damping yoke structure consisting of a superplastic SMA(Shape Memory Alloy) laminating a thin FR4 layer with viscoelastic tape on both sides. Therefore, this advantage contributes to system simplicity by reducing vibrations with small volume and mass without additional system. The effectiveness of the proposed superelastic SMA multilayer solar panel yoke was validated through free vibration testing and temperature testing using a solar panel dummy.

A Study on the Optimization of Photovoltaic System for the ZEB Certification in Detached Housing (단독 주택의 제로에너지건축물 인증을 위한 태양광시스템 최적화에 관한 연구)

  • Shin, Jee-Woong;Yun, Jae-Hyun;Ko, Jeong-Lim
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.3
    • /
    • pp.1-7
    • /
    • 2019
  • As part of the government's energy policy, Zero Energy Building certification was launched on January of 2017. However, the three passive-housing rental housing projects are the only ZEB-certified detached housing since the certification's launch. The reason is that, in order for a detached housing to earn ZEB certification, it has to secure self-reliance in energy, and a photovoltaic system is the only viable renewable energy system. Therefore, conducting an analysis to optimize the photovoltaic system in an early design stage is strongly recommended. This study aimed to propose an optimal photovoltaic system design for a detached housing after analyzing through the ECO2 energy simulation of 44 cases, varying in a module type and efficiency, inclination and azimuth. As a result, 15 cases out of 44 cases were analyzed to satisfy ZEB evaluation criteria, and it is thought that these data could contribute greatly to the expansion of ZEB certification dissemination.

Hardware passive power control simulation of hybrid propulsion system for electric propulsion aircraft (전기추진 비행기용 하이브리드 추진시스템 패시브 전력제어 하드웨어 시뮬레이션)

  • Park, Poo-Min;Lee, Kang-Yeop;Hwang, Oh-Sik;Kim, Young-Mun;Kim, Chun-Taek
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.544-547
    • /
    • 2011
  • This paper describes on hardware simulation of passive power control of propulsion system for electric propulsion aircraft of KARI. The propulsion system uses hybrid power system that is composed of solar cell, fuel cell and battery. The fuel cell is replaces by simulator due to its difficulty in handling while the other components are the same as that will be used on board. As the result, reliable power supply for propulsion is confirmed and each power source is well operated showing its characteristics.

  • PDF

A Study on the Thermal Environment in the Multipurpose Greenhouse in Winter (다목적 그린하우스의 동절기 실내온열환경 특성에 관한 실측 연구)

  • Kim, Soon-Joo;Na, Su-Yeun
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.15-21
    • /
    • 2007
  • The purpose of this study is to provide the basic data for passive control and energy conservation strategies of multipurpose greenhouse. Passive design strategies which are appropriate to Jeju environmental circumstance were applied in the multipurpose greenhouse. The field measurement were conducted to examine relationship of micro climate and indoor thermal environment in the multipurpose greenhouse. The result of this study can be summarized as follow ; (1) The indoor temperature was ranged from 5 to $21^{\circ}C$ without a heating system, when the exterior temperature was -1 to $19^{\circ}C$. (2) The multi-purpose greenhouse requires almost no heating energy in winter, when it is used as a greenhouse, an exhibition hall or a cafeteria.

Efficient Lighting System for Amenity Light Environment (쾌적 빛 환경을 위한 효율적 조명 시스템)

  • Choi, Jong-Hyo;Oh, Myoung-Won;Kim, Byung-Seon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.136-141
    • /
    • 2009
  • Considerable part of energy consumption is occurred by through buildings. Especially, Lighting energy consumption is most part of one in building. There is very various ways and systems for saving lighting energy. In method, It can be divided Passive Daylighting System and Active Daylighting System. Louver, Screen and use of window's character is representative ways of passive system. Reflection mirror, optical pipe and optical fiber is representative method of active system. Introducing day light on which place can't be introduced day light by typical method is important advantage of active system. Except introducing day lighting methods, efficient lighting management system can save lighting energy. It called lighting automation system. Representatively, Occupancy-related automation and Brightness-related automation system is that. According to occupancy and introducing daylighting level properly operate lamp's intensity of illumination that can save lots of energy. Though Introducing daylighting method, effective lighting system we can get proper intensity of illuminance level and energy saving.

  • PDF

Application of the Solar Chimney System for Improving the Thermal Environment in Winter (겨울철 건물 열환경 개선을 위한 태양굴뚝 시스템의 응용)

  • Oh, Ju-Hong;Kim, Eui-Jong;Lee, Hyun-Soo;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.5
    • /
    • pp.39-48
    • /
    • 2015
  • In this study, the solar chimney, one of the passive solar systems, is proposed as a method to improve the thermal environment of northern zones in buildings. As this well-known system has rarely been used in building projects, an adequate application of the system is proposed in this paper: the solar chimney system is designed to meet the required ventilation rate and consequently to reduce the ventilation load in the northern part of a building. To investigate such a possibility, a numerical model for the system is developed, and results of numerical tests are used for energy simulations. The results were taken into account for test simulations in EnergyPlus. As a result, approximately 75% of the volumetric ventilation rate required in the north zone could be supplied with the air volume acquired through the system and the monthly mean load was reduced by 29.5%, from 1.584 kWh to 1.117 kWh. The analyses of hourly mean heating and ventilation load over the heating period indicated that the system was very effective at around 13:00. Results show that 33% reduction in the ventilation load and 17% in the heating load for the north zone could be acquired through this system.