• Title/Summary/Keyword: Passive Safety

Search Result 398, Processing Time 0.03 seconds

A study on the Development and Field Application of Passive Filter for Harmonic Suppression (고조파 억제용 수동필터의 현장 적용화 연구)

  • Park, H.J.;Kang, C.S.;Lee, H.G.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.89-91
    • /
    • 1999
  • The use of electronic power unit essentially result in serious problems by harmonics. To reduce the effect by harmonics, we propose passive filter system which can control each harmonic filters individually. So, additional devices to detect and analyze harmonics were installed to filter system. According to measured data in the field, we calculated the values of filter components and verified them by computer simulation. After installation of filter system in the field, we could reduce harmonics and improve power factor.

  • PDF

Dynamic Modeling of the Free Piston Stirling Pump for the Passive Safety Injection of the Next Generation Nuclear Power Plant (차세대 신형원자로의 피동형 안전 주입장치를 위한 프리피스톤 스터링 펌프의 동특성 모델)

  • Lee, Jae-Young
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.11a
    • /
    • pp.149-154
    • /
    • 1999
  • This paper describes a passive safety injection system with free piston Stirling pump working withabundant decay heat in the nuclear reactor during the hypothetical accident. The water column in the tube assembly connected from the hot chamber to the cold chamber in the pump oscillates periodically due to thermal volume changes of non-condensable gas in each chamber. The oscillating pressure in the water column is converted into the pumping power with a suction-and-bleed type valve assembly. In this paper a dynamic model describing the frequency of oscillation and pumping pressure is developed. It was found that the pumping pressure is a function of the temperature difference between the chambers. Also, the frequency oscillation depends on the length of the tube with water column.

  • PDF

Study on Computational Simulation of a Metro Collision Accident and Improvement of Passive Safety (도시철도 충돌사고 시뮬레이션 및 충돌안전도 개선방안 연구)

  • Jung, Hyun Seung;Son, Seung Wan;Kwon, Tae Soo;Kim, Jin Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.9
    • /
    • pp.885-892
    • /
    • 2015
  • In this study, we simulate the railway crash accident that occurred at the Sangwangsimni station on the Seoul Metro Line #2, and we propose a solution to minimize the damage. We use LS-DYNA, which is the commercial software employed for collision analysis to perform 1-D and 3-D simulations for the recurrence of accidents. By performing 1-D simulations, we analyze the load, displacement, absorbed energy of the couplers, and acceleration of vehicles, and we evaluate the safety in accidental collisions. By performing 3-D simulations, we analyze the deformation of the car and over-ridding. We propose methods to improve the safety in collisions involving railway vehicles, and we perform collision accident simulations to determine improvements when applying a high-performance energy absorber to the front car.

The Comparison of Activities of Occupational Safety and Health among Sub-Sectors of Manufacturing Industry (제조업의 업종별 안전보건활동 수준 비교)

  • Kim, Ki-Sik;Rhee, Kyung Yong
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.5
    • /
    • pp.136-145
    • /
    • 2014
  • This article has compared the level of activities of occupational safety and health in workplace among sub-sectors of manufacturing industry in order to set the priority for policy intervention. Data of manufacturing industry in the survey on the current status of occupational safety and health was used with factor analysis and radar graphic method. Authors have categorized sub-sectors of manufacturing industry into four categories, attained group, active group, neglected group, and passive group based on injury rate, level of safety and health activities. The neglected group may be the first target group for occupational safety and health policy guiding some detailed occupational safety and health activities. Limitation of this study is that cross sectional data was analyzed. The long term effect could not be analyzed.

EXPERIMENTAL INVESTIGATIONS RELEVANT FOR HYDROGEN AND FISSION PRODUCT ISSUES RAISED BY THE FUKUSHIMA ACCIDENT

  • GUPTA, SANJEEV
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.11-25
    • /
    • 2015
  • The accident at Japan's Fukushima Daiichi nuclear power plant in March 2011, caused by an earthquake and a subsequent tsunami, resulted in a failure of the power systems that are needed to cool the reactors at the plant. The accident progression in the absence of heat removal systems caused Units 1-3 to undergo fuel melting. Containment pressurization and hydrogen explosions ultimately resulted in the escape of radioactivity from reactor containments into the atmosphere and ocean. Problems in containment venting operation, leakage from primary containment boundary to the reactor building, improper functioning of standby gas treatment system (SGTS), unmitigated hydrogen accumulation in the reactor building were identified as some of the reasons those added-up in the severity of the accident. The Fukushima accident not only initiated worldwide demand for installation of adequate control and mitigation measures to minimize the potential source term to the environment but also advocated assessment of the existing mitigation systems performance behavior under a wide range of postulated accident scenarios. The uncertainty in estimating the released fraction of the radionuclides due to the Fukushima accident also underlined the need for comprehensive understanding of fission product behavior as a function of the thermal hydraulic conditions and the type of gaseous, aqueous, and solid materials available for interaction, e.g., gas components, decontamination paint, aerosols, and water pools. In the light of the Fukushima accident, additional experimental needs identified for hydrogen and fission product issues need to be investigated in an integrated and optimized way. Additionally, as more and more passive safety systems, such as passive autocatalytic recombiners and filtered containment venting systems are being retrofitted in current reactors and also planned for future reactors, identified hydrogen and fission product issues will need to be coupled with the operation of passive safety systems in phenomena oriented and coupled effects experiments. In the present paper, potential hydrogen and fission product issues raised by the Fukushima accident are discussed. The discussion focuses on hydrogen and fission product behavior inside nuclear power plant containments under severe accident conditions. The relevant experimental investigations conducted in the technical scale containment THAI (thermal hydraulics, hydrogen, aerosols, and iodine) test facility (9.2 m high, 3.2 m in diameter, and $60m^3$ volume) are discussed in the light of the Fukushima accident.

Comparison of auxiliary Feedwater and EDRS Operation during Natural Circulation of MRX

  • Kim, Jae-Hak;Park, Goon-Cherl
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.514-519
    • /
    • 1997
  • The MRX is an integral type ship reactor with 100 MWt power, which is designed by Japan Atomic Energy Research Institute. It is characterized by integral type PWR, in-vessel type control roe drive mechanism, water-filled containment vessel and passive decay heat removal system. Marine reactor should have high passive safety. Therefore, in this study, we simulated the loss of flow accident to verify the passive decay heat removal by natural circulation using RETRAN-03 code. auxiliary feed water systems are used for decay heat removal mechanism and results are compared with the loss of flow accident analysis using emergency decay heat removal system by JAERI. Results are very similar to case of EDRS 1 loop operation in JAERI analysis and decay heat is successfully removed by natural circulation.

  • PDF

Design review on indoor environment of museum buildings in hot-humid tropical climate

  • Ogwu, Ikechukwu;Long, Zhilin;Okonkwo, Moses M.;Zhang, Xuhui;Lee, Deuckhang;Zhang, Wei
    • Advances in Computational Design
    • /
    • v.7 no.4
    • /
    • pp.321-343
    • /
    • 2022
  • Museum buildings display artefacts for public education and enjoyment, ensuring their long-term safety and the comfort of visitors by following strict indoor environment control protocols using mechanical Heating, Ventilation and Air Conditioning (HVAC) systems to keep the (environmental) variables at a fixed comfort level. Maintaining this requires constant supply of energy currently mostly sourced from the combustion of fossil fuels which exacerbates climate change. However, a review on the effects of the indoor environmental variables on museum artefacts as well as museum visitors revealed that there is no specific point at which artefact deterioration occurs, and that there are wide ranges of conditions that guarantee the long-term safety of artefacts and human comfort. Visits to museum buildings in hot-humid tropical climate of Nigeria revealed that strict indoor environmental practices were adopted. Even when appropriate micro-climatic conditions are provided for artefacts, mechanical HVAC systems remain necessary for visitor comfort because almost no consideration is given to natural ventilation. With the current global push towards energy management, this paper reviewed passive environmental control practices, architectural design strategies, and discusses the adaptation of double skin façade with jali screens, and the notion of smart materials, which can satisfy the range of requirements for the long-term safety of artefacts and levels of human comfort in buildings in hot-humid tropical climate, without mechanical HVAC systems. This review would inspire more discussions on passive, energy efficient, smart and climate responsible popular architecture, challenging current thinking on the impact of the more accepted representative architecture.

The Effects of Job Demand-control-support Profiles on Presenteeism: Evidence from the Sixth Korean Working Condition Survey

  • Ari Min;Hye Chong Hong
    • Safety and Health at Work
    • /
    • v.14 no.1
    • /
    • pp.85-92
    • /
    • 2023
  • Background: Presenteeism is closely related to work performance, work quality and quantity, and productivity at work. According to the job demand-control-support model, job demand, job control, and support play important roles in presenteeism. The present study investigated job characteristics profiles based on the job demand-control-support model and identify the association between job characteristics profiles and presenteeism. Methods: This secondary data analysis used the Sixth Korean Working Condition Survey, a nationwide cross-sectional dataset. The study included 25,361 Korean wage workers employed in the workplace with two or more workers. Participants were classified into four job characteristics profiles based on the job demand-control-support model, using latent profile analysis, and logistic regression was performed to examine the association between study variables. Results: Overall, 11.0 % of study participants reported experience of presenteeism in the past 12 months. Age, sex, location, monthly income, shift work, work hours, health problems, and sleep disturbances were significantly associated with presenteeism. The rate of presenteeism was the highest in the passive isolate group. The passive collective, active collective, and low-stain collective groups had a 23.0%, 21.0%, and 29.0% lower likelihood of experiencing presenteeism, respectively, than the passive isolate group. Conclusions: The job demand-control-support profiles and the risk of presenteeism were significantly associated. The most significant group that lowered the experience of presenteeism was the low-strain collective group, which had a low level of demand and high levels of control and support. Therefore, we need a policy to reduce job demand and increase job control and support at the organizational and national levels.

Experimental validation of simulating natural circulation of liquid metal using water

  • Lee, Min Ho;Jerng, Dong Wook;Bang, In Cheol
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.1963-1973
    • /
    • 2020
  • Liquid metal-cooled reactors use various passive safety systems driven by natural circulation. Investigating these safety systems experimentally is more advantageous by using a simulant. Although numerous experimental approaches have been applied to natural circulation-driven passive safety systems using simulants, there has been no clear validation of the similarity law. To validate the similarity law experimentally, SINCRO-V experiment was conducted using Wood's metal and water for simulant of the Wood's metal. A pair of SINCRO-V facilities with length-scale ratio of 14.1:1 for identical Bo' was investigated, which was the main similarity parameter in temperature field simulation. In the experimental range of 0.2-1.0% of decay heat, the temperature distribution characteristics of the small water facility were very similar to that of the large Wood's metal facility. The temperature of the Wood's metal predicted by the water experiment showed good agreement with the actual Wood's metal temperature. Despite some error factors like discordance of Gr' and property change along the temperature, the water experiment predicted the Wood's metal temperature with an error of 27%. The validity of the similarity law was confirmed by the SINCRO-V experiments.