• Title/Summary/Keyword: Passive Noise Control

Search Result 161, Processing Time 0.025 seconds

Active Noise Control of 3D Enclosure System using FXLMS Algorithm (FXLMS 알고리즘을 이용한 3 차원 인클로저 시스템의 능동소음제어)

  • Oh, Jae-Eung;Yang, In-Hyung;Yoon, Ji-Hyun;Jung, Jae-Eun;Lee, Jong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.240-241
    • /
    • 2009
  • The method of the reduction of the duct noise can be classified by the method of passive control and the method of active control. However, the passive control method has a demerit to reduce the effect of noise reduction at low frequency (below 500Hz) range and to be limited by a space. Whereas, the active control method can overcome the demerit of passive control method. The algorithm of active control is mostly used the Least-Mean-Square (LMS) algorithm because the LMS algorithm can easily obtain the complex transfer function in real-time. Especially, When the Filtered-X LMS (FXLMS) algorithm is applied to an ANC system.

  • PDF

Simulation of Active Noise Control on Harmonic Sound (복수조화음에 대한 능동소음제어 시뮬레이션)

  • Kwon, O-Cheol;Lee, Gyeong-Tae;Lee, Hae-Jin;Yang, In-Hyung;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.737-742
    • /
    • 2007
  • The method of the reducing duct noise can be classified by passive and active control techniques. However, passive control has a limited effect of noise reduction at low frequencies (below 500Hz) and is limited by the space. On the other hand, active control can overcome these passive control limitations. The active control technique mostly uses the Least-Mean-Square (LMS) algorithm, because the LMS algorithm can easily obtain the complex transfer function in real-time particularly when the Filtered-X LMS (FXLMS) algorithm is applied to an active noise control (ANC) system. However, the convergence performance of the LMS algorithm decreases slightly so it may delay the convergence time when the FXLMS algorithm is applied to the active control of duct noise. Thus the Co-FXLMS algorithm was developed to improve the control performance in order to solve this problem. The Co-FXLMS algorithm is realized by using an estimate of the cross correlation between the adaptation error and the filtered input signal to control the step size. In this paper, the performance of the Co-FXLMS algorithm is presented in comparison with the FXLMS algorithm. Simulation results show that active noise control using Co-FXLMS is effective in reducing duct noise.

  • PDF

Sound Control of Structural-acoustic Coupling System Using Optimum Layout of Absorbing Material and Damping Material (흡음재 및 제진재의 최적배치를 이용한 구조-음향 연성계의 소음제어)

  • Kim, Dong-Young;Hong, Do-Kwan;Ahn, Chan-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.2 s.95
    • /
    • pp.161-168
    • /
    • 2005
  • The absorbing material is mostly used to changing the acoustic energy to the heat energy in the passive control, and that consists of the porous media. That controls an air borne noise while the stiffened plates, damping material and additional mass control a structure borne noise. The additional mass can decrease the sound by mass effect and shift of natural frequency, and damping material can decrease the sound by damping effect. The passive acoustic control using these kinds of control materials has an advantage that is possible to control the acoustic in the wide frequency band and the whole space at a price as compared with the active control using the various electronic circuit and actuator. But the space efficiency decreased and the control ability isn't up to the active control. So it is necessary to maximize the control ability in the specific frequency to raise the capacity of passive control minimizing the diminution of space efficiency such an active control. Therefore, the characteristics of control materials and the optimum layout of control materials that attached to the boundary of structure-acoustic coupled cavity were studied using sequential optimization on this study.

Vibration Control of Beams Using Mechanical-Electrical Hybrid Passive Damping System (전기적-기계적 수동감쇠기를 이용한 빔의 진동제어)

  • 박철휴;안상준;박현철
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.8
    • /
    • pp.651-657
    • /
    • 2003
  • A new mechanical-electrical hybrid passive damping treatment is proposed to improve the performance of structural vibration control. The proposed hybrid passive damping system consists of a constrained layer damping treatment and a shunt circuit. In a passive mechanical constrained layer damping, a viscoelastic material damping layer is used to control the structural vibration modes in high frequency range. The passive electrical damping is designed for targeting the nitration amplitude in the low frequency range. The governing equations of motion are derived through the Hamilton's principle. The obtained mathematical model Is validated experimentally. The presented theoretical and experimental techniques provide invaluable tools for controlling the multiple modes of a vibrating structure over a wide frequency band.

Vibration Control of Beams Using Mechanical-Electrical Hybrid Passive Damping System (전기적-기계적 수동감쇠기를 이용한 빔의 진동제어)

  • 안상준;박현철;박철휴
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.362-367
    • /
    • 2003
  • A new mechanical-electrical hybrid passive dam ping treatment is proposed to improve the performance of structural vibration control. The proposed hybrid passive damping system consists of a constrained layer damping treatment and a shunt circuit. In a passive mechanical constrained layer damping, a viscoelastic material damping layer is used to control the structural vibration modes in high frequency range. The passive electrical damping is designed for targeting the vibration amplitude in the low frequency range. The governing equations of motion are derived through the Hamilton's principle. The obtained mathematical model is validated experimentally. The presented theoretical and experimental techniques provide invaluable tools for controlling the multiple modes of a vibrating structure over a wide frequency band.

  • PDF

Development of Moving Bandpass Filter for Improving Control Performance of Active Intake Noise Control under Rapid Acceleration (급가속 흡기계의 능동소음제어 성능향상을 위한 Moving Bandpass filter 개발)

  • Jeon, Ki-Won;Oh, Jae-Eung;Lee, Choong-Hui;Lee, Jung-Yoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.1016-1019
    • /
    • 2004
  • The study of the noise reduction of an automobile has been concentrated on the reduction of the automotive engine noise because the engine noise is the major cause of automotive noise. However, many studies of automotive engine noise led to the interest of the noise reduction of the exhaust and intake system. The method of the reduction of the induction noise can be classified by the method of passive control and the method of active control. However, the passive control method has a demerit to reduce the effect of noise reduction at low frequency (below 500Hz) range and to be limited by a space of the engine room. Whereas, the active control method can overcome the demerit of passive control method. The algorithm of active control is mostly used the LMS (Least-Mean-Square) algorithm because the LMS algorithm can easily obtain the complex transfer function in real-time. Especially, Filtered-X LMS (FXLMS) algorithm is applied to an ANC system. However, the convergence performance of LMS algorithm goes bad when the FXLMS algorithm is applied to an active control of the induction noise under rapidly accelerated driving conditions. So, in order to this problem, the modified FXLMS algorithm using Moving Bandpass Filter was proposed. In this study, MBPF was implemented and use ANC for automotive intake under revived rapidly accelerated driving conditions and it was verified its performance.

  • PDF

Active Control of Noise Transmitted through a Window of Enclosures (음향 인클로저의 환기창을 통한 투과소음 능동제어)

  • Ji, Sumin;Hong, Chinsuk;Jung, Weuibong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.670-672
    • /
    • 2014
  • In this study, we investigate active control of noise transmitted through a window of enclosures minimizing the acoustic power. To reduce noise of the enclosures, passive methods with absorbing material are generally used. The passive methods, however, are limited use due to the vantilation windows. In this case, these windows are path of noise leakage. Feedforward active noise control technology is applied to minimize the sound power from the enclosure. The feedforward controller is implemented with FIR filter based on the transfer functions calculated numerically. The controller reflects the delay due to FIR filter. The noise transmitted through the window is actively controlled, and the reduction of the power is obtained by 15dB.

  • PDF

A Hybrid Control Development to Suppress the Noise in the Rectangular Enclosure using an Active/Passive Smart Foam Actuator

  • Kim Yeung-Shik;Kim Gi-Man;Roh Cheal-Ha;Fuller C. R.
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.4
    • /
    • pp.37-43
    • /
    • 2005
  • This paper presents a hybrid control algorithm for the active noise control in the rectangular enclosure using an active/passive foam actuator. The hybrid control composes of the adaptive feedforward with feedback loop in which the adaptive feedforward control uses the well-known filtered-x LMS(least mean square) algorithm and the feedback loop consists of the sliding mode controller and observer. The hybrid control has its robustness for both transient and persistent external disturbances and increases the convergence speed due to the reduced variance of the jiltered-x signal by adding the feedback loop. The sliding mode control (SMC) is used to incorporate insensitivity to parameter variations and rejection of disturbances and the observer is used to get the state information in the controller deign. An active/passive smart foam actuator is used to minimize noise actively using an embedded PVDF film driven by an electrical input and passively using an absorption-foam. The error path dynamics is experimentally identified in the form of the auto-regressive and moving-average using the frequency domain identification technique. Experimental results demonstrate the effectiveness of the hybrid control and the feasibility of the smart foam actuator.

Noise Reduction using Passive and Active Noise Control in the Closed Area (수동과 능동방식을 혼용한 폐공간에서 소음감쇠)

  • Cho Byung-Mo
    • Journal of IKEEE
    • /
    • v.5 no.1 s.8
    • /
    • pp.16-23
    • /
    • 2001
  • Passive noise reduction is a classical approach to attenuate industrial noise, and an active noise cancellation has several advantages over the passive noise cancellation. The active noise reduction system offers a better low frequency performance with a smaller and lighter system. This paper presents a simple active closed loop control system which consists of an controller for inverting and compensating the phase delay, a microphone for picking up the external noise, and a loudspeaker for radiating the acoustic out of phase signal to reduce the external noise, and external noise can be reduced after compensating the phase difference to be $180^{\circ}$ in the frequency of maximum value in the amplitude response. The noise of the phase delay covered from $50^{\circ}\;to\;310^{\circ}$ tends to be reduced in the active noise control system and it is possible to obtain a noise cancelling of up to approximately 20[dB] at the ears in the enclosurer.

  • PDF

Development of Correlation FXLMS Algorithm for the Performance Improvement in the Active Noise Control of Automotive Intake System under Rapid Acceleration (급가속시 자동차 흡기계의 능동소음제어 성능향상을 위한 Correlation FXLMS 알고리듬 개발)

  • Lee, Kyeong-Tae;Shim, Hyoun-Jin;Aminudin, Bin Abu;Lee, Jung-Yoon;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.551-554
    • /
    • 2005
  • The method of the reduction of the automotive induction noise can be classified by the method of passive control and the method of active control. However, the passive control method has a demerit to reduce the effect of noise reduction at low frequency (below 500Hz) range and to be limited by a space of the engine room. Whereas, the active control method can overcome the demerit of passive control method. The algorithm of active control is mostly used the LMS (Least-Mean-Square) algorithm because the LMS algorithm can easily obtain the complex transfer function in real-time. Especially, When the Filtered-X LMS (FXLMS) algorithm is applied to an ANC system. However, the convergence performance of LMS algorithm goes bad when the FXLMS algorithm is applied to an active control of the induction noise under rapidly accelerated driving conditions. Thus Normalized FXLMS algorithm was developed to improve the control performance under the rapid acceleration. The advantage of Normalized FXLMS algorithm is that the step size is no longer constant. Instead, it varies with time. But there is one additional practical difficulty that can arise when a nonstationary input is used. If the input is zero for consecutive samples, then the step size becomes unbounded. So, in order to solve this problem. the Correlation FXLMS algorithm was developed. The Correlation FXLMS algorithm is realized by using an estimate of the cross correlation between the adaptation error and the filtered input signal to control the step size. In this paper, the performance of the Correlation FXLMS Is presented in comparison with that of the other FXLMS algorithms based on computer simulations.

  • PDF