• Title/Summary/Keyword: Passive Control Device

Search Result 177, Processing Time 0.025 seconds

Semi-Actively Controlled Impact System Design (충격장치의 반 능동 제어시스템 설계)

  • Kim, Dong-Hwan;Choi, Moon-Chul;Lee, Kyo-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.46-56
    • /
    • 1999
  • A semi-actively controlled impact system which adjusts an impulse exerted by the external impact is studies. The main control variables are internal pressure difference inside the cylinder and the shock absorber displacement while it travels. Compared to a conventional one so called a passive system with a variable orifice inside the cylinder, a semi-actively controlled system utilizes an external orifice controlled by a highly fast responding electrical proportional valve. This device overcomes the temperature and viscosity change due to continuous operating and keeps the desired pressure difference and displacement in every operation. In this article a new prototype impact system is designed and manufactured based on a semi-actively control system. Through computer simulations and experiments, we verify the possibility of controlling the shock absorber pressure and displacement. After investigating the control performance a modified semi-actively controlled system with better control performance is also proposed.

  • PDF

Design and Implementation of the Device Independent RFID Middleware Component for the Next Generation Port-Logistics (차세대 항만물류를 위한 장치 독립형 RFID 미들웨어 구성요소의 설계 및 구현)

  • Jang, Su-Wan;Kim, Jong-Deok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.1
    • /
    • pp.124-130
    • /
    • 2007
  • RFID technology is considered as a promising solution to increase efficiency of port logistics. Especially active RFID technology, such as e-Seal for container security, is receiving attention nowadays. If active RFID system is combined with passive RFID and legacy bar-code system overall efficiency of port logistics can be improved However, due to the device dependent control interface of RFID readers, there are many difficulties in making active-passive combined RFID system environment. In this paper, we introduce Smart Reader Interface (SRI) system, which provides a device independent RFID reader interrace to control different kinds of RFID readers by hiding device dependent control interface through adapter architecture which is similar to device driver of conventional operating systems. The key design objectives of SRI are the followings; conformance to the related standard. efficiency in processing, easy addition of an adapter for a new RFID reader. Actually, the implemented SRI system can support various kinds of commercial RFID readers, and through the test carried out not only in laboratory but also in the container terminal in the GwangYang Port, its practicality is verified.

Vibration control of an SDOF structure using semi-active tuned mass damner (준능동 TMD를 이용한 단자유도 구조물의 진동제어)

  • Kim, Hyun-Su;Lee, Dong-Guen
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.424-431
    • /
    • 2006
  • Many types of tuned mass dampers (TMDs), such as active TMDs, multiple TMDs, hybrid TMDs etc., have been studied to effectively reduce the dynamic responses of a structure subjected to various types of dynamic loads. In this study, we replace a passive damper by a semi-active tuned mass damper to improve the control performance of conventional TMDs (STMD). An idealized variable damping device is used as semi-active dampers. These semi-active dampers can change the properties of TMDs in real time based on the dynamic responses of a structure. The control performance of STMD is investigated with respect to various types of excitation by numerical simulation. Groundhook control algorithm is used to appropriately modulate the damping force of semi-active dampers. The control effectiveness between STMD and a conventional passive TMD, both under harmonic and random excitations, is evaluated and compared for a single-degree-of-freedom (SDOF) structure. Excitations are applied to the structure as a dynamic force and ground motion, respectively. The numerical studies showed that the control effectiveness of STMD is significantly superior to that of the passive TMD, regardless of the type of excitations.

  • PDF

Preparation and Electrochemical Performance of 1.5 V and 3.0 V-Class Primary Film Batteries for Radio Frequency Identification (RFID)

  • Lee, Young-Gi;Choi, Min-Gyu;Kang, Kun-Young;Kim, Kwang-Man
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.39-44
    • /
    • 2010
  • 1.5 V and 3.0 V-class film-type primary batteries were designed for radio frequency identification (RFID) tag. Efficient fabrication processes such as screen-printings of conducting layer ($25{\mu}m$), active material layer ($40{\mu}m$ for anode and $80{\mu}m$ for cathode), and electrolyte/separator/electrolyte layer ($100{\mu}m$), were adopted to give better performances of the 1.5 V-class film-type Leclanch$\acute{e}$ primary battery for battery-assisted passive (BAP) RFID tag. Lithium (Li) metal is used as an anode material in a 3.0 V-class film-type $MnO_2||$Li primary battery to increase the operating voltage and discharge capacity for application to active sensor tags of a radio frequency identification system. The fabricated 3.0 V-class film-type Li primary battery passes several safety tests and achieves a discharge capacity of more than 9 mAh $cm^{-2}$.

Vertical Vibration Control of High Speed Train-Steel Arch Bridge using Vibration Control Device (진동제어장치를 이용한 고속열차-강아치교의 수직진동제어)

  • 고현무;강수창;유상희;옥승용;추진교
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.360-367
    • /
    • 2003
  • This paper presents passive vibration control method to suppress train-induced vibration on a long-span steel arch bridge. According to the train load frequency analysis, undesirable resonance of a bridge will occur when the impact frequency of the train axles are close to the modal frequencies of the bridge. Because the first mode shape of the long-span steel arch bridge may take anti-symmetric shape along the bridge direction, however, the optimal control configuration for resonance suppression should be considered carefully In this study, bridge-vehicle element is used to estimate the bridge-train interaction precisely. From the numerical simulation of a loom steel arch bridge under TGV-K train loading, dynamic magnification influences are evaluated according to vehicle moving speed and efficient control system with passive dampers are presented in order to diminish the vertical displacement and vertical acceleration.

  • PDF

Performance verification of Smart Complex Damping System for Suppressing Vibration of Stay Cable (케이블 진동 저감을 위한 스마트 복합 감쇠 시스템의 성능평가)

  • Park, Chul-Min;Jung, Hyung-Jo;Ko, Man-Gi;Lee, In-Won
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.453-460
    • /
    • 2006
  • Stay cables, such as used in cable-stayed bridges, are prone to vibration due to their low inherent damping characteristics. Recently some studies have shown that active and semiactive control system using MR damper can potentially achieve both higher performance levels than passive control system and adaptability with few of the detractions. However, a control system including a power supply, controller, and sensors is required to maximize the performance of the MR damper and this complicated control system is not effective to most of large civil structures. This paper proposes a smart complex damping system which consists of toggle system and MR dampers by introducing electromagnetic induction(EMI) system as an external power source to MR damper. The performance of the proposed damping device has been compared with that of the passive-type control systems employing a MR damper, a linear viscous damper, and EMI system.

  • PDF

Seismic protection of the benchmark highway bridge with passive hybrid control system

  • Saha, Arijit;Saha, Purnachandra;Patro, Sanjaya Kumar
    • Earthquakes and Structures
    • /
    • v.15 no.3
    • /
    • pp.227-241
    • /
    • 2018
  • The present paper deals with the optimum performance of the passive hybrid control system for the benchmark highway bridge under the six earthquakes ground motion. The investigation is carried out on a simplified finite element model of the 91/5 highway overcrossing located in Southern California. A viscous fluid damper (known as VFD) or non-linear fluid viscous spring damper has been used as a passive supplement device associated with polynomial friction pendulum isolator (known as PFPI) to form a passive hybrid control system. A parametric study is considered to find out the optimum parameters of the PFPI system for the optimal response of the bridge. The effect of the velocity exponent of the VFD and non-linear FV spring damper on the response of the bridge is carried out by considering different values of velocity exponent. Further, the influences of damping coefficient and vibration period of the dampers are also examined on the response of the bridge. To study the effectiveness of the passive hybrid system on the response of the isolated bridge, it is compared with the corresponding PFPI isolated bridges. The investigation showed that passive supplement damper such as VFD or non-linear FV spring damper associated with PFPI system is significantly reducing the seismic response of the benchmark highway bridge. Further, it is also observed that non-linear FV spring damper hybrid system is a more promising strategy in reducing the response of the bridge compared to the VFD associated hybrid system.

Design Method Development of Smart TMD for Retractable-Roof Spatial Structure (개폐식 대공간 구조물을 위한 스마트 TMD 설계기법 개발)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.3
    • /
    • pp.107-115
    • /
    • 2017
  • In this paper, a structural design method of a smart tuned mass damper (TMD) for a retractable-roof spatial structure under earthquake excitation was proposed. For this purpose, a retractable-roof spatial structure was simplified to a single degree of freedom (SDOF) model. Dynamic characteristics of a retractable-roof spatial structure is changed based on opened or closed roof condition. This condition was considered in the numerical simulation. A magnetorheological (MR) damper was used to compose a smart TMD and a displacement based ground-hook control algorithm was used to control the smart TMD. The control effectiveness of a smart TMD under harmonic and earthquake excitation were evaluated in comparison with a conventional passive TMD. The vibration control robustness of a smart TMD and a passive TMD were compared along with the variation of natural period of a simplified structure. Dynamic responses of a smart TMD and passive TMD under resonant harmonic excitation and earthquake load were compared by varying mass ratio of TMD to total mass of the simplified structure. The design procedure proposed in this study is expected to be used for preliminary design of a smart TMD for a retractable-roof spatial structure.

Development of Active Noise Control System using DSP (DSP를 이용한 능동소음 제어시스템의 개발)

  • Kim, H.S.;Shin, J.;Oh, J.E.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.108-113
    • /
    • 1994
  • Active noise control technique has superior performance in low frequency ranges(50 .approx. 400Hz) to the conventional passive noise control technique. For the feasibility of active noise control, it is required to develop a controller which can implement control algorithm on real-time. In this study, therefore, real-time controller is developed using TMS320c25, high speed digital processor. Unlike conventional DSP board of complete ADD ON type, it is possible for the developed controller to interface with the other computer system easily by series communication for the convenience of program development. Furthermore it is designes to be separated readily as a control device. Active noise control of duct system is implemented ti evaluate a performance of developed device. Active noise control of duct system is implemented to evaluate a performance of developed controller using filtered-x LMS algorithm.

  • PDF

Experimental/Computational Study on the Supersonic Cavity Flow with a Sub-Cavity to Reduce the Pressure Oscillation (압력진동을 저감하기 위한 sub-cavity를 가진 초음속 공동유동에 대한 실험 및 수치해석적 연구)

  • Lim, Chae-Min;Lee, Young-Ki;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3009-3014
    • /
    • 2007
  • The effectiveness of passive control techniques for alleviating the pressure oscillation generated in a supersonic cavity flow was investigated numerically and experimentally, respectively. The control device includes a sub-cavity installed near the leading edge of a rectangular cavity. Time-dependent supersonic cavity flow characteristics with turbulent features were examined by using the three-dimensional, mass-averaged Navier-Stokes computation based on a finite volume scheme and large eddy simulation. The results show that the pressure oscillation near the trailing edge dominates overall time-dependent cavity pressure variations. Such an oscillation can be attenuated more significantly in the presence of the sub-cavity compared with the cavity without sub-cavity, and a larger sub-cavity leads to better control performance.

  • PDF