• Title/Summary/Keyword: Passive/Active System

Search Result 755, Processing Time 0.027 seconds

A New Control Algorithm of Series Active Power Filter for Harmonic Reduction in Power System (전력계통 시스템에서 고조파 저감을 위한 새로운 직렬형 능동전력필터의 제어법)

  • Lim, Seung-Won;Han, Yoon-Seok;Kim, Young-Seok;Won, Chung-Yuen;Choi, Se-Wan
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.5
    • /
    • pp.221-228
    • /
    • 2001
  • In this paper, a new control algorithm of series active power filter is proposed to reduce harmonic generated from nonlinear load in power system. In conventional control algorithm, harmonic current must be calculated firstly, and then compensation voltage was calculated by using the results but the proposed control algorithm can calculate compensation voltage directly. Compensating principle of proposed control algorithm is presented in detail. A combined system of series active filter and passive filter is composed in order to experiment. Experiment was carried out to verify proposed control algorithm of series active filter and experimental results are analyzed.

  • PDF

Study of Design Strategy to Reduce Energy Consumption in a Standard Office Building (사무용 건물의 에너지 절감을 위한 요소별 성능 분석 및 디자인 전략에 관한 연구)

  • Yang, Ja-Kang;Kim, Chul-Ho;Kim, Kang-Soo
    • KIEAE Journal
    • /
    • v.16 no.2
    • /
    • pp.23-31
    • /
    • 2016
  • Purpose: Recently energy consumption is rapidly increasing due to continuous development of social evolution in various field. In this situation, there is a lot of effort to reduce this energy consumption in many ways, especially in building energy. Preceding studies already started to analyze the housing area such as zero energy house and passive house by researching annual building energy consumption, but to apply the results of housing to office building is insufficient since it has different consumption tendency. Method: In this study, eQuest program was used for simulation and the base model is selected among standard office building in ASHRAE 90.1. Variables are divided into passive and active factors for comparison. Result: In passive factors, glazing system showed the highest energy saving rate by 21.3% with triple low-e glass and enhancing wall u-value showed the lowest energy saving rate by 3.6% with 0.15 m2/K. In active factors, VAV system showed 30.9% energy saving rate when compared to CAV system, and heat exchanger showed 10.2% energy saving rate. For regeneration energy part, photovoltaic panel generated 10.4% of base annual energy usage.

Vibration Control Performance Evaluation of Semi-active Outrigger Damper System (준능동 아웃리거 댐퍼시스템의 진동제어 성능평가)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.4
    • /
    • pp.81-89
    • /
    • 2015
  • Damped outrigger systems have been proposed as a novel energy dissipation system to protect tall buildings from severe earthquakes and strong wind loads. In this study, semi-active damping devices such as magnetorheological (MR) dampers instead of passive dampers are installed vertically between the outrigger and perimeter columns to achieve large and adaptable energy dissipation. Control performance of semi-active outrigger damper system mainly depends on the control algorithm. Fuzzy logic control algorithm was used to generate command voltage sent to MR damper. Genetic algorithm was used to optimize the fuzzy logic controller. An artificial earthquake load was generated for numerical simulation. A simplified numerical model of damped outrigger system was developed. Based on numerical analyses, it has been shown that the semi-active damped outrigger system can effectively reduce both displacement and acceleration responses of the tall building in comparison with a passive outrigger damper system.

The Experimental Research for the Use Characteristics of the Passive and Active type Domestic Solar Hot Water Systems (자연형 및 설비형 태양열 온수기의 이용특성에 대한 실험적 연구)

  • Lee, Dong-Won;Kwak, Hee-You
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.5
    • /
    • pp.82-88
    • /
    • 2013
  • There are the stirring test and drain test in the daily performance test to determine the thermal performance of a domestic solar hot water system. The drain test is a test that measures the discharge heating rate while drain the hot water from the top of the storage tank and supply the city water to the bottom of the tank. From the perspective of the user, this drain test is more effective than the stirring test. In this study, the thermal performance were compared through the drain test for a passive type and an active type domestic solar hot water systems consisting of the same storage tank and collectors. At this point, a passive type was used the horizontal storage tanks, and an active type was used vertical storage tank. In the drain test, when the hot water drained up to the reference hot water temperature, an active type which have vertical storage tank represents excellent daily performance than a passive type which have horizontal storage tank regardless of weather conditions. The reason for this is because the vertical storage tank is advantageous to thermal stratification in the tank. After the drain test, the residual heat for the horizontal storage tank was much more than the vertical storage tank, but in the next day the amount of discharged heat were less than the those of vertical storage tank neither. Thus, the solar water heating system which have horizontal storage tank should be adopted preheating control method rather than separate using control method when connected with auxiliary heat source device.

The NCF Algorithm for the Control of an Electro-mechanical Active Suspension System (전기-기계식 능동 현가장치 제어를 위한 NCF 알고리즘)

  • Han, In-Sik;Lee, Yoon-Bok;Choi, Kyo-Jun;Kim, Jae-Yong;Jang, Myeong-Eon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.1-9
    • /
    • 2012
  • The NCF control algorithm for an active suspension system was proposed and investigated. The NCF algorithm using spring dynamic variation force and suspension relative velocity was applied to the 1/4 vehicle model and numerical analysis was performed. Vehicle's performances such as vehicle displacement, vehicle acceleration, suspension deflection, tire deflection and absorbed power were calculated and compared with those of the passive, semi-active and LQR active suspension system that use full state feedback. Numerical results show that the proposed NCF active suspension system has superior performance compared with the passive and semi-active suspension system and has very similar performance compared with the LQR active suspension system. So the proposed NCF algorithm is considered as a highly practical algorithm because it requires only one displacement sensor in a 1/4 vehicle model.

A Study on the Manufacturing and Dynamic Charateristics of Vibration Absorber Using Piezoceramics and Isolation Pad (압전세라믹과 방진고무를 이용한 진동흡수장치의 제작과 동적특성 연구)

  • Heo, Seok;Kwak, Moon-k
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.477-482
    • /
    • 2002
  • This research is concerned with the study of an active vibration absorber using piezoelectric actuators and Isolation pad. The active isolation system consists of 4-pairs of PZT actuators bonded on the surface of an aluminum plate and a passive damping material. The active system is connected to the passive system in series. The Signals of the accelerometers are fed into the PZT actuator through the controller. We proposed a new control technique which can deal with the shock as well as the base excitation in this study. The Positive Acceleration Feedback(PAE) tuned to the natural frequency of the vibration isolation system is used to suppress the vibrations caused by the shock using the top accelerometer signal. The Negative Acceleration Feedback (NAF) based on the base acceleration signal is used to counteract the base motion. Experimental results show that the proposed active vibration isolation system can suppress vibrations.

  • PDF

Performance of passive and active MTMDs in seismic response of Ahvaz cable-stayed bridge

  • Zahrai, Seyed Mehdi;Froozanfar, Mohammad
    • Smart Structures and Systems
    • /
    • v.23 no.5
    • /
    • pp.449-466
    • /
    • 2019
  • Cable-stayed bridges are attractive due to their beauty, reducing material consumption, less harm to the environment and so on, in comparison with other kinds of bridges. As a massive structure with long period and low damping (0.3 to 2%) under many dynamic loads, these bridges are susceptible to fatigue, serviceability disorder, damage or even collapse. Tuned Mass Damper (TMD) is a suitable controlling system to reduce the vibrations and prevent the threats in such bridges. In this paper, Multi Tuned Mass Damper (MTMD) system is added to the Ahvaz cable stayed Bridge in Iran, to reduce its seismic vibrations. First, the bridge is modeled in SAP2000 followed with result verification. Dead and live loads and the moving loads have been assigned to the bridge. Then the finite element model is developed in OpenSees, with the goal of running a nonlinear time-history analysis. Three far-field and three near-field earthquake records are imposed to the model after scaling to the PGA of 0.25 g, 0.4 g, 0.55 g and 0.7 g. Two MTMD systems, passive and active, with the number of TMDs from 1 to 8, are placed in specific points of the main span of bridge, adding a total mass ratio of 1 to 10% to the bridge. The parameters of the TMDs are optimized using Genetic Algorithm (GA). Also, the optimum force for active control is achieved by Fuzzy Logic Control (FLC). The results showed that the maximum displacement of the center of the bridge main span reduced 33% and 48% respectively by adding passive and active MTMD systems. The RMS of displacement reduced 37% and 47%, the velocity 36% and 42% and also the base shear in pylons, 27% and 47%, respectively by adding passive and active systems, in the best cases.

Application of Chernoff bound to passive system reliability evaluation for probabilistic safety assessment of nuclear power plants

  • So, Eunseo;Kim, Man Cheol
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2915-2923
    • /
    • 2022
  • There is an increasing interest in passive safety systems to minimize the need for operator intervention or external power sources in nuclear power plants. Because a passive system has a weak driving force, there is greater uncertainty in the performance compared with an active system. In previous studies, several methods have been suggested to evaluate passive system reliability, and many of them estimated the failure probability using thermal-hydraulic analyses and the Monte Carlo method. However, if the functional failure of a passive system is rare, it is difficult to estimate the failure probability using conventional methods owing to their high computational time. In this paper, a procedure for the application of the Chernoff bound to the evaluation of passive system reliability is proposed. A feasibility study of the procedure was conducted on a passive decay heat removal system of a micro modular reactor in its conceptual design phase, and it was demonstrated that the passive system reliability can be evaluated without performing a large number of thermal-hydraulic analyses or Monte Carlo simulations when the system has a small failure probability. Accordingly, the advantages and constraints of applying the Chernoff bound for passive system reliability evaluation are discussed in this paper.

Lyapunov-based Semi-active Control of Adaptive Base Isolation System employing Magnetorheological Elastomer base isolators

  • Chen, Xi;Li, Jianchun;Li, Yancheng;Gu, Xiaoyu
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.1077-1099
    • /
    • 2016
  • One of the main shortcomings in the current passive base isolation system is lack of adaptability. The recent research and development of a novel adaptive seismic isolator based on magnetorheological elastomer (MRE) material has created an opportunity to add adaptability to base isolation systems for civil structures. The new MRE based base isolator is able to significantly alter its shear modulus or lateral stiffness with the applied magnetic field or electric current, which makes it a competitive candidate to develop an adaptive base isolation system. This paper aims at exploring suitable control algorithms for such adaptive base isolation system by developing a close-loop semi-active control system for a building structure equipped with MRE base isolators. The MRE base isolator is simulated by a numerical model derived from experimental characterization based on the Bouc-Wen Model, which is able to describe the force-displacement response of the device accurately. The parameters of Bouc-Wen Model such as the stiffness and the damping coefficients are described as functions of the applied current. The state-space model is built by analyzing the dynamic property of the structure embedded with MRE base isolators. A Lyapunov-based controller is designed to adaptively vary the current applied to MRE base isolator to suppress the quake-induced vibrations. The proposed control method is applied to a widely used benchmark base-isolated structure by numerical simulation. The performance of the adaptive base isolation system was evaluated through comparison with optimal passive base isolation system and a passive base isolation system with optimized base shear. It is concluded that the adaptive base isolation system with proposed Lyapunov-based semi-active control surpasses the performance of other two passive systems in protecting the civil structures under seismic events.

A Novel Series Active Power Filter Using Direct Compensating Voltage Extraction Method (직접 보상전압 추출기법을 이용한 새로운 직렬형 능동전력필터)

  • 우원명;한윤석;김영석;원충연;최세완
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.258-264
    • /
    • 2001
  • In this paper, a new control strategy of a series active power filter suing direct compensating voltage extraction method is proposed. The proposed series active power filter and shunt passive filters are used 3-phase 3-wire power system with nonlinear load. The series active power filter complements drawbacks of the shunt passive filter and contributes to a source side harmonic reduction. We can extract the compensating voltage of the series active power filter using performance function without phase transformations. Therefore, the calculating time is short and the control method is simple compared with conventional methods. Experimental results verify that the system using the proposed method appears a good performance.

  • PDF