• 제목/요약/키워드: Passive/Active System

검색결과 755건 처리시간 0.032초

능, 수동센서를 이용한 수중환경에서의 표적추적필터 구조 연구 (A Study on Target Tracking Filter Architecture in Underwater Environment using Active and Passive Sensors)

  • 임영택;서태일
    • 한국군사과학기술학회지
    • /
    • 제18권5호
    • /
    • pp.517-524
    • /
    • 2015
  • In this paper, we propose a new target tracking filter architecture using active and passive sensors in underwater environment. A passive sensor for target tracking needs a bearing measurement of target. And target tracking filter for using passive sensor has the observability problem. On the other hand, an active sensor does not have the problem associated with system observability problem because an active sensor uses bearing and range measurement. In this paper, the tracking filter algorithm that could be used in the active and passive sensor system is proposed to analyze maneuvering target and to improve target tracking performance. The proposed tracking filter algorithm is tested by a series of computer simulation runs and the results are analyzed and compared with existing algorithm.

빌딩간 연결을 통한 복합제어시스템의 최적설계 (Optimal Design of Hybrid Control System through Inter-Building Connection)

  • 박관순;옥승용
    • 한국안전학회지
    • /
    • 제32권6호
    • /
    • pp.81-88
    • /
    • 2017
  • This study deals with the optimal design of a hybrid control system composed of a combination of active control system and passive control system for effective seismic performance improvement of two adjacent structures. The proposed hybrid control system adopts a configuration of installing an active control device in one building and connecting two adjacent structures with a passive control device so that the one-side active control force can be bi-directionally applied to both buildings through the passive connecting devices. In order to derive the optimal performance of the proposed system, the design parameters of the passive and active control systems were searched using the genetic algorithm. Numerical simulations of 10-story and 8-story buildings have been performed to verify the effectiveness of the proposed technique. For the purpose of comparison, the conventional independent control system with two identical active control systems being installed separately for each structure was also optimally designed and its seismic response has been evaluated as well. From the comparative results of the two control systems, it is demonstrated that the proposed hybrid control system requires larger control force for its one-side active control device than the conventional independent control system does for each of both-side active devices, but quite less than the total control force required for both-side devices of the independent control system, while maintaining similar seismic performance. Therefore, the proposed system is more economical and reliable than the conventional independent control system with two identical active devices.

전자기력을 이용한 능동제진

  • 손규태;유원희;박영필
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 추계학술대회 논문집
    • /
    • pp.179-183
    • /
    • 2001
  • Vibration isolation of mechanical systems, in general is achieved through either passive or active vibration control system. Although passive vibration isolators offer simple and reliable means to protect mechanical system from vibration environment, passive vibration isolator has inherent performance limitation. Whereas, active vibration isolator provide significantly superior vibration-isolation performance. Recently, many studied and applications are carried out in this field. In this study, vibration-isolation characteristics of active vibration control system using electromagnetic force actuator are investigated. Some control algorithms. Optimal Feedforward are used for active vibration isolation. Form the experimental results of each control algorithms, active vibration isolation characteristics are investigated.

Numerical investigation of an MR damper-based smart passive control system for mitigating vibration of stay cables

  • Kim, In-Ho;Jung, Hyung-Jo;Kim, Jeong-Tae
    • Structural Engineering and Mechanics
    • /
    • 제37권4호
    • /
    • pp.443-458
    • /
    • 2011
  • An extensive numerical investigation on the magnetorheological (MR) damper-based smart passive control system for mitigating vibration of stay cables under wind loads has been conducted. The smart passive system is incorporated with an electromagnetic induction (EMI) device for reducing complexity of the conventional MR damper based semi-active control system by eliminating an external power supply part and a feedback control part (i.e., sensors and controller). In this study, the control performance of the smart passive system has been evaluated by using a cable structure model extracted from a full-scale long stay cable with high tension. Numerical simulation results of the proposed smart damping system are compared with those of the passive and semi-active control systems employing MR dampers. It is demonstrated from the results that the control performance of the smart passive control system is better than those of the passive control cases and comparable to those of the semi-active control systems in the forced vibration analysis as well as the free vibration analysis, even though there is no external power source in the smart passive system.

초전도한류기의 신뢰도에 관한 연구 (A Study on the Reliability of Superconducting Fault Current Limiter)

  • 배인수;김성열;김진오
    • 조명전기설비학회논문지
    • /
    • 제25권1호
    • /
    • pp.101-106
    • /
    • 2011
  • The failure of cooling system in Superconducting Fault Current Limiter(SFCL) increases the impedance of superconducting device, and due to malfunction of inner switches the SFCL opens the distribution system inadvertently when required to do so. In this paper, the ground fault and short circuit fault were classified as active failure and the open circuit fault was passive failure. A reliability model of SFCL considers the passive failure as well as active failure, and in the case study the reliability indices of distribution system are evaluated. It is possible that the reliability evaluation excluded passive failure makes the customers reliability seem so worse than it really was. Therefore, the reliability models of SFCL must include the active failure and passive failure together to evaluate the reliability of distribution system connected SFCL.

직렬 능동전력필터와 병렬 수동필터를 이용한 고조파 전류 저감 및 불평형 전원 전압 보상에 관한 연구 (A Study on Current Harmonics Reduction and Unbalanced Source Voltage Compensation Using Series Active Power Filter and Parallel Passive Filter)

  • 오재훈;고수현;한윤석;김영석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.196-199
    • /
    • 2001
  • This paper deals with current harmonics and unbalanced source voltages compensation using combined filter system. Filter system consists of a series active filter and parallel passive filters. Passive filters were a traditional method to compensate current harmonics, so those were installed in power system widely. The active filter can be a substitution to improve filtering characteristics and complement drawbacks of the passive filter. The combined system of the active power filter and passive filter can has a better compensation performances and economical goods. The series type active power filter injects compensation voltage into power system by transformers. It's compensation principle is able to applicate for voltage compensation. A new control algorithm for series active filter to compensate current harmonics and unbalanced source voltages is proposed. In the proposed algorithm, a compensation voltage for harmonic reduction is calculated directly by instantaneous reactive power theory, and a compensation voltage for unbalanced source voltage is calculated in based on a synchronous reference frame. By experiments, we show validity of proposed compensation method.

  • PDF

10W급 고분자 전해질 연료전지 스택의 구조적 차이에 다른 운전 특성 비교 (Effect of stack configuration on the performance of 10W PEMFC stack)

  • 임성대;김병주;손영준;윤영기;양태현;김창수;김영채
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.286-286
    • /
    • 2009
  • A small PEM fuel cell has two different stack configurations such as active and passive stacks. The active stack has a distintion of high power density although it makes system complex by using alr blower and related BOPs resulting in large system volume. On the contrary, passive stack has an advantage of compact system because it doesn't need air supplying devices although it reveals relatively low stack power density. In this study we fabricated two 10W PEMFC stacks with different stack configurations, active and passive stacks, and tested their performance and stability. The active stack consists of 13cells with an active area of $5cm^2$. The passive stack has 12cells with an active area of $16cm^2$. When we compared the stack performance of those stacks, the active stack showed higher power density compared to the passive stack, particularly at high voltage regions. However, at low voltage and high current regions, the passive stack performance was comparable to the active stack. The stack stability was largely dependent on the fuel humidity, particularly for active stack. At low humidity conditions, the active stack performance was decreased continuously and the cell voltage distribution was not uniform showing seriously low cell voltage at center cells mainly due to the cell drying. The passive stack showed relatively stable behavior at low humidity and the stack performance was largely dependent on the atmospheric conditions.

  • PDF

수동-능동 압전형 진동흡수장치의 개발 (Development of the Passive-Active Vibration Absorber Using Piezoelectric Actuators)

  • 곽명훈;허석;곽문규
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.308-312
    • /
    • 2001
  • This research is concerned with development of the passive-active vibration absorber using piezoelectric actuators. This active-passive isolation system consists of 4-pairs of PZT actuators bonded on accordion type of mounting bracket and a spring-damper located in center. Hence, the active system is connected in parallel to the passive system. In this paper, we discuss the dynamic characteristics of the addressed system. Based on the series of experiment, it is found that the proposed system can cope with the external disturbances. The controller design is currently under investigation.

  • PDF

A new hybrid vibration control methodology using a combination of magnetostrictive and hard damping alloys

  • Buravalla, Vidyashankar R.;Bhattacharya, Bishakh
    • Smart Structures and Systems
    • /
    • 제3권4호
    • /
    • pp.405-422
    • /
    • 2007
  • A new hybrid damping technique for vibration reduction in flexible structures, wherein a combination of layers of hard passive damping alloys and active (smart) magnetostrictive material is used to reduce vibrations, is proposed. While most conventional vibration control treatments are based exclusively on either passive or active based systems, this technique aims to combine the advantages of these systems and simultaneously, to overcome the inherent disadvantages in the individual systems. Two types of combined damping systems are idealized and studied here, viz., the Noninteractive system and the Interactive system. Frequency domain studies are carried out to investigate their performance. Finite element simulations using previously developed smart beam elements are carried out on typical metallic and laminated composite cantilever beams treated with hybrid damping. The influence of various parameters like excitation levels, frequency (mode) and control gain on the damping performance is investigated. It is shown that the proposed system could be used effectively to dampen the structural vibration over a wide frequency range. The interaction between the active and passive damping layers is brought out by a comparative study of the combined systems. Illustrative comparisons with 'only passive' and 'only active' damping schemes are also made. The influence and the mode dependence of control gain in a hybrid system is clearly illustrated. This study also demonstrates the significance and the exploitation of strain dependency of passive damping on the overall damping of the hybrid system. Further, the influence of the depthwise location of damping layers in laminated structures is also investigated.

Target Motion Analysis for Active/Passive Mixed-Mode Sonar Systems

  • Taek, Lim-Young;Lyul, Song-Taek
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.172.5-172
    • /
    • 2001
  • Target Motion Analysis(TMA) for Passive Sonar Systems with bearing-only measurements needs to enhance system observability to improve target tracking performance by ownship maneuvering. However, tracking problem incurred by weak observaility result in slow convergence of the target estimates. On the other hand, active sonar systems do not have problem associated with system observaility. However, it drawback related to system survivability. In this paper, the algorithm that could be used in Active/passive Mixed-Mode Sonar Systems is proposed to analyze maneuvering target motion and to improve TMA performance. The proposed TMA algorithm is tested by a series of computer simulation runs and the results ...

  • PDF