• Title/Summary/Keyword: Passivating film

Search Result 14, Processing Time 0.02 seconds

A Study on the Glass passivation film by electrophoretic method (전기영동법을 이용한 Glass Passivation막에 관한 연구)

  • 박인배;허창수
    • Electrical & Electronic Materials
    • /
    • v.10 no.5
    • /
    • pp.473-480
    • /
    • 1997
  • Surface passivation using glass powders results in good reliability for high voltage silicon power devices. In this paper Zinc borosilicate glass and Lead borosilicate glass were prepared for the purpose of passivating, and a deposition technique of glass films on the silicon surface by electrophoresis in which acetone is used as a suspension medium has been investigated. Their physical properties were compared using DTA, SEM, XRD, as a function of firing temperature, I can get the fine films of 22${\mu}{\textrm}{m}$ thickness with Lead borosilicate glass under 300 volts applied, 3 minutes and $700^{\circ}C$ firing temperature. Also I can get the fine films of 17${\mu}{\textrm}{m}$ thickness with Zinc borosilicate glass under same conditions. As a result of investigation of glass films from which glass layer was removed by placing it in HCl, it has been found that pre-firing and annealing play an important role to achieve uniform and fine glass deposition films. And also it was found that relative dielectric constant is independence of frequency.

  • PDF

Studies on the deposition of ${Si_3}{N_4}$ for the passivation of PHEMT's (PHEMT Passivation을 위한 ${Si_3}{N_4}$)

  • Sin, Jae-Wan;Park, Hyeon-Chang;Park, Hyeong-Mu;Lee, Jin-Gu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.1
    • /
    • pp.25-30
    • /
    • 2002
  • In this paper, high quality silicon nitride film is achieved using Plasma Enhanced Chemical Deposition(PECVD) system, and applied in passivating PHEMT's. Passivated PHEMT's(60 ${\mu}{\textrm}{m}$$\times$2 fingers) showed an increase of 2.7 % and 3 % in the drain saturation current and the maximum transconductance, respectively. The current gain cut-off frequency of 53 ㎓ and maximum oscillation frequency of 105 ㎓ were obtained from the fabricated PHEMT's.

A Study on the Electrochemical Properties for Effect of Additive of the Lithium Metal Anode (리튬 금속 음극의 첨가제 효과에 따른 전기 화학적 특성에 관한 연구)

  • Cho, S.M.;Lee, S.W.;Cho, B.W.;Ju, J.B.;Sohn, T.W.
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.3
    • /
    • pp.159-163
    • /
    • 2002
  • The use of lithium metal anode at lithium metal secondary battery can provide the very high energy density. Nevertheless, there are some problems that are short cycle life, lack of safety and poor thermal stability. Cycle life and cycling efficiency decline due to passivating films, dendritic lithium and increasing surface film by the reaction of lithium metal and electrolyte. This work investigated the additive effect of benzene, toluene, tetram-ethylethylenediamine, into the electrolyte. The cycling efficiency and cyclability are improved. The reason is confirmed by decreasing film resistance and increasing polarization resistance at AC impedance analysis. Electrolyte additive has a relatively less reactivity than electrolytes lithium and is adsorbed on lithium leading to suppression of the reaction between the electrolyte and lithium as well as an improvement in the lithium deposition mophology.

Power Enhancement of ZnO-Based Piezoelectric Nanogenerators Via Native Defects Control

  • Kim, Dohwan;Kim, Sang-Woo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.297.2-297.2
    • /
    • 2013
  • Scavenging electricity from wasteful energy resources is currently an important issue and piezoelectric nanogenerators (NGs) based on zinc oxide (ZnO) are promising energy harvesters that can be adapted to various portable, wearable, self-powered electronic devices. Although ZnO has several advantages for NGs, the piezoelectric semiconductor material ZnO generate an intrinsic piezoelectric potential of a few volts as a result of its mechanical deformation. As grown, ZnO is usually n-type, a property that was historically ascribed to native defects. Oxygen vacancies (Vo) that work as donors exist in ZnO thin film and usually screen some parts of the piezoelectric potential. Consequently, the ZnO NGs' piezoelectric power cannot reach to its theoretical value, and thus decreasing the effect from Vo is essential. In the present study, c-axis oriented insulator-like sputtered ZnO thin films were grown in various temperatures to fabricate an optimized nanogenerator (NGs). The purity and crystalinity of ZnO were investigated with photoluminescence (PL). Moreover, by introducing a p-type polymer usually used in organic solar cell, it was discussed how piezoelectric passivation effect works in ZnO thin films having different types of defects. Prepared ZnO thin films have both Zn vacancies (accepter like) and oxygen vacancies (donor like). It generates output voltage 20 time lager than n-type dominant semiconducting ZnO thin film without p-type polymer conjugating. The enhancement is due to the internal accepter like point defects, zinc vacancies (VZn). When the more VZn concentration increases, the more chances to prevent piezoelectric potential screening effects are occurred, consequently, the output voltage is enhanced. Moreover, by passivating remained effective oxygen vacancies by p-type polymers, we demonstrated further power enhancement.

  • PDF