• Title/Summary/Keyword: Passing vessel

Search Result 62, Processing Time 0.028 seconds

Analysis of vessel traffic patterns near Busan Port using AIS data (AIS 데이터를 활용한 부산항 인근 선박통항패턴 분석)

  • Hyeong-Tak Lee;Hey-Min Choi;Jeong-Seok Lee;Hyun Yang;Ik-Soon Cho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.155-156
    • /
    • 2022
  • Efficient operation of ships can transport cargo to ports safer and faster, and reduce fuel costs. Therefore, in this study, the pattern was analyzed using AIS data of ships passing near Busan Port, a representative port in Korea. The analysis of vessel traffic patterns was approached with a grid-based node generation method, which can be used for research such as optimal route and route prediction.

  • PDF

A Study on Safe Vessel Traffic Speeds Based On a Ship Collision Energy Analysis at Incheon Bridge (인천대교 선박 충돌에너지 분석을 통한 선박의 통항안전 속력에 관한 연구)

  • Lee, Chang-Hyun;Lee, Hong-Hoon;Kim, Deun-Bong;Kim, Chol-Seong;Park, Seong-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.6
    • /
    • pp.593-599
    • /
    • 2016
  • Incheon Bridge is 13.38 km long with an 800 m span, connecting Incheon International Airport and Songdo International City, Per hour 73.8 vessels navigate this space. The purpose of this study was to suggest a safe passing speed based on the displacement of a vessel based on the safety criteria of Incheon Bridge's anti-collision fence, which was designed during its initial construction. As AASHTO LRFD suggested, vessel collision energy, vessel collision velocity, and the hydrodynamic mass coefficient were considered to derive a safe vessel traffic speed. Incheon Bridge's anti-collision fence was designed so that 100,000 DWT vessels can navigate at a speed of 10 knot. This research suggests a safe speed for vessel traffic through a comparative analysis of an experimental ship's (300,000 DWT) speed and cargo conditions, regulation speed has been calculated according to the collision energy under each set of conditions. Additionally, safe traffic vessel's safe speed was analyzed with reference to tidal levels. Results from the experimental ship showed that a vessel of maximum 150,000 DWT is able to pass Incheon Bridge at a maximum of 7 knots with an above average water level, and is able to pass the bridge with a maximum of 8 knots under ballast conditions.

Hydrodynamic Interaction Effects Between Vessels in Confined Waters (제한수역에서 항행선박이 계류중인 선박에 미치는 간섭영향에 관한 연구)

  • Lee, Chun-Ki
    • Journal of Navigation and Port Research
    • /
    • v.35 no.10
    • /
    • pp.799-804
    • /
    • 2011
  • The hydrodynamic interaction effects between the multi-bodies can not be neglected when vessels are close to each other in congested and confined waters, such as in a harbour or narrow channel. Increase in speed and size of modern vessels make it necessary to consider this interaction effects when designing harbours and navigation channels. In this research, the hydrodynamic interaction effects of the spacing between vessels and water depth along with ship's velocity are summarized and discussed. The goal of this research is to propose a guideline of appropriate speed and distance between passing and moored vessels to avoid the influence of hydrodynamic forces and to navigate safely in confined sea areas.

Structure of Opposite Wood in Angionsperms(I) - Structure of Opposite Woods in the Inclined Stem of Mature Woods - (활엽수(闊葉樹) Opposite재(材)의 구조(構造)(I) - 경사(傾斜) 생장(生長)한 성숙재(成熟材) 수간(樹幹)의 Opposite재(材) 구조(構造) -)

  • Park, Sang-Jin;Park, Byung-Soo;Soh, Won-Taek
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.1-12
    • /
    • 1989
  • To study the structure of opposite wood in the angiosperms. samples were cut from stems and branchs of 10 spcies growing in Korea. The opposite side was defined as being along a line passing from the most wide annual ring of the tension wood on the upper side to the pith and extrapolated through the opposite side. lateral sides being on the right and left of this line. The stem woods growing almost horizontally were surveyed the structural features of the well-developed opposite wood for the tension wood. In the annual-ring of the well-developed opposite woods. an investigation was made on how the dimension of elements, microfibril angles. and cell wall layers change from tension side to opposite side. The structural characteristics of opposite wood in hardwoods realized in this study are as follows: 1. The vessel diameters increased continuously to ward the opposite side in which the values were maximum. The vessel length also increased toward opposite side. but the rates of increase were smaller than those in the vessel diameters. 2. The wood fiber length were decreased from tension toward opposite side. but the rates of decrement were f1actuated within the sampled species. 3. The microfibril angles had the minimum values on the tension side. then increased steeply toward the opposite side in which the values maximum. 4. In the percentage of elements the vessel elements increased continously at a relative rate from the tension to opposite side, whereas the values of the wood fibers were lower in the opposite than the tension side, but the' variation patterns of rays were not seem distinctly. 5. The component layers of the wood fiber in the opposite woods were very similar to the lateral woods.

  • PDF

Applications of Ship Domain Theory to Identify Risky Sector in VTS Area

  • Gang, Sang-Guen;Jeong, Jae-Yong;Yim, Jeong-Bin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.3
    • /
    • pp.277-284
    • /
    • 2014
  • This paper describes the application method of bumper area defined in the ship domain theory and it is to identify risky sectors in VTS(Vessel Traffic Services) area. The final goal of this work is to develop early warning system providing the location information with high traffic risks in Mokpo VTS area and to prevent the human errors of VTS Officer(VTSO). The current goal of this paper is to find evaluation and detection method of risky sectors. The ratio between overlapped bumper area of each vessels and the summing area of a designated sector, Ratio to Evaluate Risk(RER) ${\gamma}$ is used as one of evaluation and detection parameter. The usability of overlapped bumper area is testified through three kinds of scenarios for various traffic situations. The marine traffic data used in the experiments is collected by AIS(Automatic Identification System) receiver and then compiled in the SQL(Structured Query Language) Server. Through the analysis of passing vessel's tracks within the boundary of Mokpo VTS area, the total of 11 sectors are identified as evaluation unit sector. As experiment results from risk evaluation for the 11 sectors, it is clearly known that the proposed method with RER ${\gamma}$ can provide the location information of high risky sectors which are need to keep traffic tracks of vessel movements and to maintain traffic monitoring by VTSO.

A Study on Risk Analysis of Marine Accident for Sea Trial Ships (우리나라 시운전 선박의 해양사고 위험성 조사 분석 연구)

  • PARK, Young-Soo;KIM, Jong-Sung;KIM, Jong-Soo;LEE, Yun-Sok;KIM, Se-Won
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.3
    • /
    • pp.696-705
    • /
    • 2015
  • Approximately 4,000 vessels including sea trial ships per day are passing, entering or departing from Korea coastal waterway. Sea trial ships have erratic navigating patterns such as quick turning, crash stop and do not communicate with other vessels in appropriate time, so sea trial ships are often to expose dangerous situation such as collision in heavy traffic area. To identify the sea trial vessel's risk factors, this paper surveyed marine traffic volumes for 7 days in Korea harbour & coastal waterway, and it analyzed marine accident rate and intended to identify the risk degree of passing vessels. After that, this researched how many sea trial ship's traffic and what is the sea trial risk among sea trial items. We also conducted survey questionnaire and identified risk factors of sea trial ship. So this paper aimed to enhance the safety of korea coastal waterway to prevent sea trial ship's marine accident.

Effect of Compost Turning Frequency on the Composting and Biofiltration (퇴비화 및 탈취처리에 퇴비 혼합 교반 빈도가 미치는 영향)

  • Hong Ji-Hyung;Park Keum-Joo
    • Journal of Animal Environmental Science
    • /
    • v.12 no.2
    • /
    • pp.85-94
    • /
    • 2006
  • The effects of turning frequency of in-vessel composting on ammonia emissions during composting of separated solids from swine slurry/sawdust mixtures and performance of biofiltration using the chicken manure compost were investigated. Separated solids from swine manure amended with sawdust was composted in a 226 L laboratory-scale in-vessel reactors under various turning frequency and continuous airflow (0.6 L/min.kg.dm) for three weeks. Three laboratory-scale manure compost biofilters were built to treat effluent gas from the composting of separated solid from swine manure amened with sawdust process. These experiments were continued over a period of three weeks. The composting of separated solid swine manure amended with sawdust and manure compost biofiltration system were evaluated to determine the turning frequency type that would be adequate for the rate of decomposition and compost odour reduction. The compost odour cleaning was measured based on ammonia gas concentration before and after passing through the manure compost biofilter. The average ammonia odor reduction in the manure compost biofilter was 96.9 % at R1 (no turning), 99.4 % at R2(once a day turning) and 89.0 % at R3(twice a day turning), respectively. The efficiency of ammonia reduction was mainly influenced by the turning frequency.

  • PDF

On component isolation of conceptual advanced reactors

  • Shrestha, Samyog;Kurt, Efe G.;Prakash, Arun;Irfanoglu, Ayhan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2974-2988
    • /
    • 2022
  • Implementation of component isolation in nuclear industry is challenging due to gaps in research and the lack of specific guidelines. In this study, parameters affecting component-level isolation of advanced reactor vessels are identified based on a representative numerical model with explicit consideration of nonlinear soil-structure interaction (SSI). The objective of this study is to evaluate the effectiveness of, and to identify potential limitations of using conventional friction pendulum bearings to seismically isolate vessels. It is found that slender vessels or components are particularly vulnerable to rotational accelerations at the isolation interface, which are caused by rotation of the sub-structure and by excitation of higher modes in the horizontal direction of the seismically isolated system. Component isolation is found to be more effective for relatively stiffer vessels and at sites with stiff soil. Considering that conventional isolators are deficient in resisting axial tension, it is observed that the optimum location for supporting a component to achieve seismic isolation, is at a cross-sectional plane passing through the center of mass of the vessel. These findings are corroborated by numerous simulations of the response of seismically isolated reactor vessels at different nuclear power plant sites subject to a variety of ground motions.

Hydrogen Compressor Cycle Analysis for the Operating Pressure of 50 MPa and High Charging Capacity (50 MPa급 대용량 수소압축기 사이클 해석)

  • Song, Byung-Hee;Myoung, No-Seuk;Jang, Seon-Jun;Kwon, Jeong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.66-73
    • /
    • 2020
  • In the hydrogen compression cycle, which is currently being developed, hydrogen is compressed to a very high pressure using a compressor, and then stored and used in a high-pressure vessel. This shows that an increase in the temperature of hydrogen in the vessel due to a pressure rise during the filling process and the pressure fatigue due to the repeated cycle may cause problems in the reliability of the vessel. In this paper, for the entire processes in a 50 MPa hydrogen compression system, theoretical and numerical methods were conducted to analyze the following: the temperature increase of hydrogen in the vessel and the time required to reach thermal equilibrium with the surroundings, the change in temperature of hydrogen passing through the pressure reducing valve, and the required capacity of the heat exchanger for cooling the vessel. The results will be useful for the design and construction of hydrogen compression systems, such as hydrogen charging stations.

Comparative Study of Ice Breaking Performance according to Scale of Sea Ice on Ice Field (실해역 해빙 크기에 따른 Araon호의 쇄빙성능 비교연구)

  • Lee, Chun-Ju;Kim, Hyun Soo;Choi, Kyungsik
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.28-33
    • /
    • 2014
  • The Korean icebreaking research vessel "Araon" performed four sea trials in the Arctic and Antarctic Seas. The ice properties, such as the ice thickness, floe size, ice strength, and power of the vessel were quite different in these trials. To compare the speeds of ship with the same ice strength and power, the AARC (Arker Arctic Research Center) method is used with a vessel power of 10 MW and an ice strength of 630 Pa in this paper. Based on the analysis results, the speed of the ship was 1.62 knots (0.83 m/s) with a 1.02-m ice thickness and 2.5-km floe size, 5.3 knots (2.73 m/s) with a 1.2-m ice thickness and 1.0-km floe size, and 13.8 knots (7.10 m/s) with a 1.1-m ice thickness and 200-m floe size. The analysis results showed that the ship speed and floe size have an inversely proportional relationship. Two reasonable reasons are given in this paper for the final result. One is an ice breaking phenomenon, and the other is the effect of the ice floe mass. For the breaking phenomenon, the ice breaking force is very small because the ice floe is not breaking but tearing when a ship is passing through a small ice floe. Regarding the effect of the ice floe mass, it is impossible for a ship to push and tear an ice floe if the mass of the ice floe is too large compared to the mass of the ship. The velocity of the ship decreases when the ice floe has a large mass and a large size because the ship has to break the ice floe to move forward.