• Title/Summary/Keyword: Passenger Model

검색결과 667건 처리시간 0.029초

철도차량에 대한 피난모델 적용 (An Application of Evacuation Model for Rail Passenger Car)

  • 김종훈;김운형;이덕희;정우성
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.123-128
    • /
    • 2007
  • To predict the fire and smoke hazards of rail car with a evacuation model is essential for achieving life safety of all passengers in the event of fire. Currently, more than 30 different evacuation models are available and expected increasing demand in high population density areas as a metro train station. This paper includes brief history of evacuation models and review some key factors of design egress scenario, these are pre-movement time, egress route, location of fire, overturned carriage, and configuration of rail car. Applying the egress model for rail passenger car, users need to confirm the model's ability of physiological, psychological responses effecting to pre-movement time of individual or crowd unit, representation of complexity of carriage layout, and evaluation of effects of smoke.

  • PDF

가상시험기법을 이용한 승용차 전륜 알루미늄 서브프레임 내구설계 (Durability Design of a Passenger Car Front Aluminum Sub-frame using Virtual Testing Method)

  • 남진숙;신행우;최규재
    • 한국생산제조학회지
    • /
    • 제21권3호
    • /
    • pp.368-375
    • /
    • 2012
  • Durability performance evaluation of automotive components is very important and time consuming task. In this paper, to reduce vehicle component development time and cost virtual testing simulation technology is used to evaluate durability performance of a passenger car front aluminum sub-frame. Multibody dynamics based vehicle model and virtual test simulation model of a half car road simulator are validated by comparisons between rig test results and simulation results. Durability life prediction of the sub-frame is carried out using the model with road load data of proving ground which can evaluate accelerated durability life. We found that the durability performance of the sub-frame is sufficient and it can be predicted within short time compared to rig test time.

부분구조합성법을 이용한 전차량 모델의 진동 특성 분석 (Analysis of Vibration Characteristics of a Full Vehicle Model Using Substructure Synthesis Method)

  • 김범석;김봉수;유홍희
    • 대한기계학회논문집A
    • /
    • 제34권5호
    • /
    • pp.519-525
    • /
    • 2010
  • 승용 차량과 항공기와 같은 대형 구조물에 대한 해석에는 유한요소법이 일반적으로 사용되고 있다. 그러나 대형 구조물을 유한요소로 모델화 하여 해석하는 경우에는 자유도의 수가 수천에서 수만에 이르게 되어 이를 직접 해석하기 위해서는 많은 시간과 노력이 필요하다. 따라서 차량 모델과 같은 대형 복잡 구조물을 효율적으로 해석하기 위해 부분구조 합성법이 많이 사용되고 있다. 본 연구에서는 Craig-Bampton 방법을 이용한 전차량 모델링 방법을 제안하고 전차량 모델의 진동 특성을 분석하였다. 차량 모델을 구성하는 각 부분을 각각 부분구조 모델로 치환한 후 다시 합성하여 전차량 모델을 구성하였다. 또한, 서브프레임 주요 설계변수, 즉 마운트 위치나 프레임 크기의 편차가 전체 시스템의 모드 특성의 통계적 변화에 미치는 영향을 살펴보았다.

광역전철의 승용차 경쟁력 평가모형 개발 : 경의선·중앙선 급행열차 직결운행을 중심으로 (Development of a Model for Evaluating Metropolitan Railways' Competitiveness Against Passenger Cars: Focusing on the Express Train Service of Gyeongeui·Joongang Connected Line)

  • 이택영;진장원;최창호
    • 한국ITS학회 논문지
    • /
    • 제16권4호
    • /
    • pp.54-63
    • /
    • 2017
  • 본 연구는 광역전철 활성화를 목표로 승용차 대비 경쟁력 평가를 위한 수단선택모형을 개발하였다. 연구대상 노선은 수도권의 경의선과 중앙선이며, 열차운행 구간은 두 노선을 연결하는 일산역부터 구리역까지 설정하였다. 수단선택모형은 잠재선호조사(SP) 자료를 이용한 개별행태모형이며, 교통수단선택의 경쟁구도는 승용차와 급행열차이다. 연구 결과, 수단선택모형이 적정한 수준으로 도출되었으며, 이를 이용하여 통행자의 시간가치와 탄력성 값이 나타내는 특성을 분석하였다. 분석결과 광역전철에서 급행열차를 운행할 경우에는 통행비용의 감소보다는 통행시간의 단축에 주안점을 두는 것이 더욱 효과적으로 나타났다. 또한 이 같은 측면에서 개별노선간의 직결운행을 확대하고 급행열차를 운행하여 환승시간과 차내시간을 줄여주는 정책 추진이 요구된다.

고속도로 교통수요모형 구축을 위한 유전자 알고리즘 기반 TCS 차종별 최적 승용차환산계수 산정 (Estimation of Optimal Passenger Car Equivalents of TCS Vehicle Types for Expressway Travel Demand Models Using a Genetic Algorithm)

  • 김경현;윤정은;박재범;남승태;류종득;윤일수
    • 한국도로학회논문집
    • /
    • 제17권3호
    • /
    • pp.97-105
    • /
    • 2015
  • PURPOSES : The Toll Collection System (TCS) operated by the Korea Expressway Corporation provides accurate traffic counts between tollgates within the expressway network under the closed-type toll collection system. However, although origin-destination (OD) matrices for a travel demand model can be constructed using these traffic counts, these matrices cannot be directly applied because it is technically difficult to determine appropriate passenger car equivalent (PCE) values for the vehicle types used in TCS. Therefore, this study was initiated to systematically determine the appropriate PCE values of TCS vehicle types for the travel demand model. METHODS : To search for the appropriate PCE values of TCS vehicle types, a traffic demand model based on TCS-based OD matrices and the expressway network was developed. Using the traffic demand model and a genetic algorithm, the appropriate PCE values were optimized through an approach that minimizes errors between actual link counts and estimated link volumes. RESULTS : As a result of the optimization, the optimal PCE values of TCS vehicle types 1 and 5 were determined to be 1 and 3.7, respectively. Those of TCS vehicle types 2 through 4 are found in the manual for the preliminary feasibility study. CONCLUSIONS : Based on the given vehicle delay functions and network properties (i.e., speeds and capacities), the travel demand model with the optimized PCE values produced a MAPE value of 37.7%, RMSE value of 17124.14, and correlation coefficient of 0.9506. Conclusively, the optimized PCE values were revealed to produce estimates of expressway link volumes sufficiently close to actual link counts.

차량 모델을 고려한 자동변속기 차량의 변속 과도 특성 분석 (Analysis of the Shifting Transients from the Passenger Car with an Automatic Transmission considering the Vehicle Model)

  • 공진형;박진호;김정윤;임원식;박영일;이장무
    • 한국자동차공학회논문집
    • /
    • 제12권4호
    • /
    • pp.154-162
    • /
    • 2004
  • In this study, a mathematical model for analyzing the shifting transients of the passenger car with an automatic transmission is proposed. The proposed model comprises a power transmission system and a vehicle system, which are coupled. In order to extract the modeling parameters, on-road car test is carried out. The model is composed of a detailed powertrain, an engine/AT housing, a simplified suspension system, tires and a vehicle body model. On the test, the vehicle accelerations and pitch ratio are measured by using accelerometers and a gyro sensor. The speeds, the brake signal, and the throttle position are taken from sensors which already exist in the vehicle. Considering natural ftequencies, which is calculated from the measured accelerations, and the characteristic equation, vehicle model parameters are identified. Dynamic behaviors during upshift or downshift are simulated using the proposed vehicle model. By comparing and analyzing the simulation result and on-road car test data, the vibration of the Engine/AT housing influences the shifting transients. The effect of model parameters are also studied. Among model parameters, the location of engine mountings influences the vibration of the vehicle body.

EFFECTS OF THE VEHICLE MODEL ON SHIFTING TRANSIENTS OF PASSENGER CARS WITH AUTOMATIC TRANSMISSION

  • Kong, J.H.;Park, J.H.;Lim, W.S.;Park, Y.I.;Lee, J.M.
    • International Journal of Automotive Technology
    • /
    • 제7권2호
    • /
    • pp.155-160
    • /
    • 2006
  • This paper presents a vehicle model for analyzing the transient shifting characterisitics of a passenger car with automatic transmission. Then the presented vehicle model was linked with the dynamic model of an automatic transmission. In order to identify the parameters of the vehicle model, we installed a test equipment with an accelerometer in a conventional vehicle and performed road tests. With the proposed vehicle model, we simulated the dynamic characteristics during shifting, and benchmarked with experimental results. Moreover, a modal analysis was carried out to investigate the effect of the vehicle model in the frequency domain and to obtain the transfer function of the vehicle model. In addition, we showed the numerical results in the time domain for analyzing the effect of each stiffness element, such as engine mountings and suspensions.

Fault Detection System for Front-wheel Sleeving Passenger Cars

  • Kim, Hwan-Seong;You, Sam-Sang;Kim, Jin-Ho;Ha, Ju-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.45.3-45
    • /
    • 2001
  • This paper deal with a fault detection algorithm for front wheel passenger car systems by using robust $H{\infty}$ control theory. Firstly, we present a unified formulation of vehicle dynamics for front wheel car systems and transform this formulation into state space form. Also, by considering the cornering stiffness which depends on the tyre-road contact conditions, a multiplicative uncertainty for vehicle model is described. Next, the failures of sensor and actuator for vehicle system are defined in which the fault .lter is considered. From the nominal vehicle model, an augmented system includes the multiplicative uncertainty and the model of fault filter is proposed. Lastly by using $H{\infty}$ norm property the fault detect conditions are deefi.ned, and the actuator and sensor failures are detected and isolated by designing the robust $H{\infty}$ controller, respectively.

  • PDF

Estimation of Vehicle Sideslip Angle for Four-wheel Steering Passenger Cars

  • Kim, Hwan-Seong;You, Sam-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.476-476
    • /
    • 2000
  • This paper deals with an estimation method far sideslip angle by using an unknown input observation technique in 4WS passenger car systems. Firstly, a 4WS vehicle model with 3DOP is derived under the constant velocity and same tyre's properties. The induced model is transformed into the linear state space model with considering the external disturbance. Secondly, an unknown input observer is introduced and its property which estimating the states of system without any disturbance information is shown. Lastly, the estimated sideslip angle of the 4WS system is verified through numerical simulation.

  • PDF

윙렛을 부착한 승용차의 공력특성에 관한 실험적 연구 (Experimental Study on the Aerodynamic Characteristics of a Passenger Vehicle with Winglets)

  • 임진혁
    • 한국자동차공학회논문집
    • /
    • 제7권7호
    • /
    • pp.149-156
    • /
    • 1999
  • In this study, aerodynmaic characteristics of the notch-back and fast-backpassenger vehicle models(1/10~1/12 acale) attached with winglets were experimentally investigated in a low speed wind tunnel. For various positions(X/L). tilted angles($\beta$) of a winglet, the aerodynamic forces on the vehicle model and rear-surface pressures were measured at various flow speeds. Also a flow of model surface was visualized by tuft method. The experimental results showed that winglets effect aerodynamic characteristics of vehicle models. A maximum of 3% reduction in lift coefficient was achieved with winglets at $\alpha$=-30$^{\circ}$. A maximum of 10% reduction in drag coefficient was achieved for a model with winglets and a rear-spoiler.

  • PDF