• Title/Summary/Keyword: Passage Vortex

Search Result 84, Processing Time 0.022 seconds

An Alysis of Flow and Noise Source for Vacuum Cleaner Centrigugal Fan (진공청소기 원심홴의 유동과 소음원 해석)

  • 전완호;유기완;이덕주;이승갑
    • Journal of KSNVE
    • /
    • v.7 no.1
    • /
    • pp.99-106
    • /
    • 1997
  • Centrigugal fans are widely used due to their ability to achieve relatively high pressure ratios in a short axial distance compared to axial fans. Because of their widespread use, the noise generated by these machines causes one of serious problems. In general, centrigugal fan noise is often dominated by tones at BPF(blade passage frequency) and its higher harmonics. This is a consequence of the strong interaction between the periodic flow discharged radially from the impeller and the stator blades or the cutoff. But in vacuum cleaner fan the noise is dominated by not only the discrete tones of BPF but also broadband frequencies. In this study we investigate the mechanism of broadband noise and predict for the unsteady flow field and the acoustic pressure field associated with the centrifugal fan. DVM(discrete vortex method) is used to calculates the flow field and the Lowson's method is used to predict the acoustic pressures. From the results we find that the broadband noise of a circular casing centrifugal fan is due to the unsteady force fluctuation around the impeller blades related to the vortex shedding. The unsteady forces associated with the shed vortices at impeller and related to the interactions to the diffuser and the exit.

  • PDF

Unsteady Flow Characteristics of an Axial Flow Fan Installed in the Outdoor Unit of Air Conditioner (에어콘 실외기용 축류송풍기의 비정상 유동장 특성 연구)

  • Jang, Choon-Man
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.223-230
    • /
    • 2005
  • The unsteady nature of vortex structures has been investigated by a large eddy simulation (LES) in an axial flow fan with a shroud covering only the rear region of its rotor tip. The simulation shows that the tip vortex plays a major role in the structure and unsteady behavior of the vortical flow in the fan. The movements of the vortex structures induce high-pressure fluctuations on the rotor blade and in the blade passage. Frequency characteristics of the fluctuating pressure on the rotor blade are analyzed using wavelet transform. The dominant frequency of the real-time pressure selected at the high pressure fluctuation region corresponds well to that of the fluctuating rotor torque and the experimental result of fan noise. It is mainly generated due to the unsteady behavior of the vortical flow, such as the tip vortex and the leading edge separation vortex.

  • PDF

Unsteady Nature of a Tip Leakage Vortex in an Axial Flow Fan (축류팬 익단누설와류의 비정상 특성)

  • Jang, Choon-Man;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.845-850
    • /
    • 2003
  • Unsteady nature of a tip leakage vortex in an axial flow fan operating at a design and off-design operating conditions has been investigated by measuring the velocity fluctuation in a blade passage with a rotating hotwire probe sensor. Two hot-wire probe sensors rotating with the fan rotor were also introduced to obtain the cross-correlation coefficient between the two sensors located in the vortical flow as well as the fluctuating velocity. The results show that the vortical flow structure near the rotor tip can be clearly observed at the quasi-orthogonal planes to a tip leakage vortex. The leakage vortex is enlarged as the flow rate is decreased, thus resulting in the high blockage to main flow. The spectral peaks due to the fluctuating velocity near the rotor tip are mainly observed in the reverse flow region at higher flow rates than the peak pressure operating condition. However, no peak frequency presents near the rotor tip for near stall condition.

  • PDF

Experimental Study on the Unsteady Flow under Various Operating Conditions of a Counter Rotating Axial Flow Fan (엇회전식 축류팬의 작동조건 변화에 따른 비정상 유동에 관한 실험적 연구)

  • Kang, Hyun-Koo;Cho, Lee-Sang;Cho, Jin-Soo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1389-1394
    • /
    • 2004
  • Experiments were done for the unsteady flow in a counter rotating axial flow fan near peak efficiency and stall point. Flow fields in a counter rotating axial flow fan were measured at cross-sectional planes of the upstream and downstream of each rotor. Cross sectional passage flow patterns were investigated through the acquired data by the $45^{\circ}$ inclined hot-wire. Comparison of flow characteristics between two different operating conditions such as tip vortex, secondary flow and turbulence intensity were performed through the analyses of axial, radial and tangential velocity distributions. As a result, tip vortex and secondary flows are enforced and measured obviously at stall point.

  • PDF

Large Eddy Simulation of Turbulent Heat Transfer in a Straight Cooling Passage with Various Aspect Ratios (형상비변화에 따른 직선냉각유로에 대한 난류열전달 LES해석)

  • Park, Tae-Seon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.274-277
    • /
    • 2012
  • Large eddy simulation is applied to the turbulent flow and heat transfer in straight cooling passages with varying aspect ratio. The turbulent statistics of the flow and thermal quantities are calculated and the characteristics of Nusselt number are investigated. To scrutinize near-wall streamwise vortices, a conditional sampling technique is adopted. Clockwise and counter-clockwise rotating streamwise vortices are sampled and the probability density function of the vortex circulation Reynolds number and wall Nusselt number are calculated.

  • PDF

Enhancement of Heat Transfer in Internal Passage using Pin-Fin with Jet Hole and Complex Pin-Fin-Dimple Array (제트홀이 설치된 핀-휜 및 핀-휜/딤플 복합 배열을 사용한 내부유로에서의 열전달 향상)

  • Park, Jun Su
    • Journal of Institute of Convergence Technology
    • /
    • v.5 no.1
    • /
    • pp.27-31
    • /
    • 2015
  • A Pin-fin array is widely used to enhance the heat transfer in the internal cooling passage. The heat transfer distribution around the pin-fin is varied by the horseshoe vortex and flow separation. The difference of heat transfer coefficient induces the large thermal stress, which is one of the major reasons to break of hot components. So, it is required to enhance the heat transfer on the back side of pin-fin to solve the thermal stress problem. This study suggests the pin-fin with inclined jet hole and complex pin-fin/dimple array to enhance the heat transfer on the back side of pin-fin. The heat transfer coefficient is predicted by the numerical analysis, which is performed by CFX 14.0. The numerical results are obtained at Reynolds number, 10,000. The results show that the heat transfer on the back side of pin-fin is increased in both cases. Beside, the wake, which comes from dimple and jet, helps to develop the horseshoe vortex and increase the heat transfer on the next row pin-fin.

Effects of Incidence on Aerodynamic Losses in the Tip-Leakage Flow Region of a High-Turning Turbine Rotor Blade (입사각이 터빈 동익 팁누설유동 영역에서의 압력손실에 미치는 영향)

  • Chae, Byoung-Joo;Lee, Sang-Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.2
    • /
    • pp.41-47
    • /
    • 2010
  • The effect of incidence angle on the three-dimensional flow and aerodynamic loss in the tip leakage flow region downstream of a turbine rotor cascade has been investigated for two tip gap-to-chord ratios of h/c=0.0% (no tip gap) and 2.0%. The incidence angle is changed to be $i=-10^{\circ}$, $0^{\circ}$, and $5^{\circ}$. The results show that for $i=5^{\circ}$, secondary flows including the passage vortex are intensified noticeably, and there is a strong interaction between the passage and tip leakage vortices. For $i=-10^{\circ}$, however, the passage vortex is weakened significantly, so that there exists only a strong leakage-jet-like secondary flows near the casing wall. For h/c=0.0% and 2.0%, aerodynamic loss tends to increase with increasing i from $-10^{\circ}$ to $5^{\circ}$. A small increment of i in its positive incidence range results in a remarkable aerodynamic loss increase, while increasing i in the negative incidence range leads to a small change in the aerodynamic loss generation.

Structure of Tip Leakage Flow in a Forward-Swept Axial-Flow Fan (전향 축류형 홴에서의 익단 누설 유동 구조)

  • Lee, Gong-Hee;Myung, Hwan-Joo;Baek, Je-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.883-892
    • /
    • 2003
  • The experiment using three-dimensional laser Dopperr velocimetery (LDV) measurements and the computation using the Reynolds stress model of the commercial code, FLUENT, were conducted to give a clear understanding on the structure of tip leakage flow in a forward-swept axial-flow fan operating at the maximum efficiency condition. The tip leakage vortex was generated near the position of the minimum wall static pressure, which was located at approximately 12% chord downstream from the leading edge of blade suction side, and developed along the centerline of the pressure trough within the blade passages. A reverse flow between the blade tip region and the casing, induced by tip leakage vortex, acted as a blockage on the through-flow. As a result, high momentum flux was observed below the tip leakage vortex. As the tip leakage vortex proceeded to the aft part of the blade passage, the strength of tip leakage vortex decreased due to the strong interaction with the through-flow and casing boundary layer, and the diffusion of tip leakage vortex caused by high turbulence. In comparison with LDV measurement data, the computed results predicted the complex viscous flow patterns inside the tip region, including the locus of tip leakage vortex center, in a reliable level.

Flow Characteristics of a Tip Leakage Vortex at Different Flow Rates in an Axial Flow Fan (유량에 따른 축류홴의 익단누설와류 특성)

  • Jang, Choon-Man;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1383-1388
    • /
    • 2004
  • The flow characteristics in the blade passage of a low speed axial flow fan have been investigated by experimental analysis using a rotating hot-wire sensor for design and off-design operating conditions. The results show that the tip leakage vortex is moved upstream when flow rate is decreased, thus disturbing the formation of wake flow near the rotor tip. The tip leakage vortex interfaces with blade pressure surface, and results in high velocity fluctuation near the pressure surface. From the relative velocity distributions near the rotor tip, large axial velocity decay is observed at near stall condition, which results in large blockage compared to that at the design condition. Througout the flow measurements using a quasi-orthogonal measuring points to the tip leakage vortex, it is noted that the radial position of the tip leakage vortex is distributed between 94 and 96 percent span for all flow conditions. High spectrum density due to the large fluctuation of the tip leakage vortex is observed near the blade suction surface below the frequency of 1000 Hz at near stall condition.

  • PDF

Evolution of Flame Shape to a Vortex Pair

  • Rhee, Chang-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.623-629
    • /
    • 2001
  • The PSC (Propagation of Surfaces under Curvature) algorithm is adapted to the simulation of a flame propagation in a premixed medium including the effect of volume expansion across the flame front due to exothermicity. The algorithm is further developed to incorporate the flame anchoring scheme. This methodology is successfully applied to numerically simulate the response of an anchored V-flame to two strong free stream vortices, in accord with experimental observations of a passage of Karman vortex street through a flame. The simulation predicts flame cusping when a strong vortex pair interacts with flame front. In other words, this algorithm handles merging and breaking of the flame front and provides an accurate calculation of the flame curvature which is needed for flame propagation computation and estimation of curvature-dependent flame speeds.

  • PDF