• Title/Summary/Keyword: Particulate organic matter

Search Result 257, Processing Time 0.026 seconds

The Origin and Characteristics of Sedimentary Organic Matter on Sindu-ri Tidal Flat, Korea (신두리 갯벌 퇴적 유기물의 기원과 특성)

  • Shin, Woo Seok
    • Journal of Wetlands Research
    • /
    • v.22 no.2
    • /
    • pp.59-65
    • /
    • 2020
  • The purpose of this study is to determine the origin of organic matter on sediment at Sindu-ri tidal flat. Grain size, organic matter, C/N ratio and the 13C and δ15N ratio were measured at three stations (Stn. A, B, C) of the tidal flat. As a result, the spatial variation in sediment properties showed that organic matter was related positively to the sediment mud content. Organic matters originating from marine particulate organic matter (marine POM) and fish farm particulate organic matter (fish farm POM) showed sedimentation of organic matters at Stn. A, sandy tidal flat, though terrestial plant (TP) and benthic microalgae (BMA) did at Stn.C, muddy tidal flat. Meanwhile, Stn. B, the intermediate property of Stn. A and C, was affected by marine POM and BMA. Furthermore, it was revealed that the amount and origin of organic matters in the sediments depended on spatial variation, and the factors were different from the stations. Particularly, at the Stn. C, the sediment showed high concentration of TOC in terrestrial organic matter and smaller size particles (< 63 ㎛). These facts suggest the many small size particles and organic matter will affect the sediment environmental condition in the Stn. C.

Chemopreventive Effect of Quercetin, Vitamin C and Trolox Against the Organic Extract of Airborne Particulate Matter Induced Genotoxicity in A549 Human Lung Carcinoma Cells (대기부유분진추출물로 야기된 DNA 손상에 대한 Quercetin, Vitamin C 및 Trolox 의 보호효과)

  • Kim, Nam-Yee;Heo, Moon-Young
    • YAKHAK HOEJI
    • /
    • v.51 no.4
    • /
    • pp.239-245
    • /
    • 2007
  • In order to evaluate the genotoxicity of airborne particulate matter extracted with dichloromethane (APE), the rat microsome mediated (S-9) or DNA repair enzyme treated Comet assays were performed using the single cell gel electrophoresis in A549 human lung carcinoma cells. It was found that the cells interacting with APE showed more DNA single-strand breaks relative to untreated cells. The genotoxicity of APE was increased with the treatment of S-9 mixture. Microsome mediated DNA damage was inhibited by CYP1Al inhibitor, quercetin. The APE also showed oxidative DNA damage evaluated by endonuclease III treatment. Oxidative DNA damage of APE was inhibited by antioxidants such as vita- min C and Trolox. We also found that the vegetables or fruits extract may reduce APE-induced genotoxicity by their anti- oxidant activity and CYP1A1 inhibition.

Separation of soil Organic Debris using Sucrose-ZnCl2 Density Gradient Centrifugation

  • Jung, Seok-Ho;Chung, Doug-Young;Han, Gwang-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.1
    • /
    • pp.30-36
    • /
    • 2012
  • The active fraction of soil organic matter, which includes organic debris and light organic fraction, plays a major role in nutrient cycling. In addition, particulate organic matter is a valuable index of labile soil organic matter and can reflect differences in various soil behaviors. Since soil organic matter bound to soil mineral particles has its density lower than soil minerals, we partitioned soil organic matter into debris ($<1.5g\;cm^{-3}$), light fraction ($1.5-2.0g\;cm^{-3}$), and heavy fraction ($>2.0g\;cm^{-3}$), based on high density $ZnCl_{2-}$ sucrose solutions. Generally, partitioned organic bands were clearly separated, demonstrating that the $ZnCl_{2-}$ sucrose solutions are useful for such a density gradient centrifugation. The available gradient ranges from 1.2 to $2.0g\;cm^{-3}$. Although there was not a statistically meaningful difference in organic debris and organomineral fractions among the examined soils, there was a general trend that a higher content of organic debris resulted in a higher proportion of light organomineral fraction. In addition, high clay content was associated with increased fraction of light organomineals. Partitioning of soil organic carbon revealed that carbon content is reduced in the heavy fraction than in the light fraction, reflecting that the light fraction contains more fresh and abundant carbon than the passive resistant fraction. It was also found that carbon contents in the overall organic matter, debris, light fraction, and heavy fractions may differ considerably in response to different farming practices.

Mutagenicity by Several Fractions of Organic Matter Extracted from Airborne Particulates Collected in atmosphere (대기중 부유분진에 함유된 유기물의 분획별 돌연변이원성)

  • Jang, Jae-Yeon;Kim, Bak-Kwang;Chung, Yong
    • YAKHAK HOEJI
    • /
    • v.33 no.1
    • /
    • pp.46-53
    • /
    • 1989
  • The extractable organic matter was extraced from airborne particulates collected in Seoul during 1986. It was fractionated to several fracrtions and mutagenicities of them were tested in Salmonella thyphimurium TA98 by Ames method. The neutral fraction showed the highest indirect acting mutagenicity while the highest direct acting mutagenicity was observed in the acidic fraction. Indirect acting mutagenicity of airborne particulate was attributed to its neutral fraction about 88% in average, to acidic about 10% in average and to basic fraction about 2% in average. Direct acting mutagenicity of airborne particulate was attributed to its neutral fraction about 70%, to acidic fraction about 29% and to basic fraction about 1%. Among five subfractions of neutral fraction, the proportion of mutagenicity of polynuclear aromatic hydrocarbon subfraction was 13.2% in indirect acting mutagenicity and 5.0% in direct acting mutagenicity.

  • PDF

Evaluation of the Possibility of Developing Organic Matter Indicators in Coastal Environments: Utilization of Dissolved Organic Carbon and Fluorescent Dissolved Organic Matter (연안환경에서 유기물 지표 개발을 위한 가능성 평가: 용존유기탄소와 형광용존유기물질 활용)

  • Lee, Min-Young;Yang, Kyungsun;Kim, Sunchan;Kim, Tae-Hoon
    • Ocean and Polar Research
    • /
    • v.43 no.2
    • /
    • pp.65-72
    • /
    • 2021
  • In order to evaluate the dissolved organic carbon (DOC) and fluorescent dissolved organic matter (FDOM), as indicators of organic matter in the coastal environments, we measured the concentrations of DOC, FDOM, and chemical oxygen demand (COD) in saline groundwater (Woljeong, Pyoseon, and Hwasun beaches) and coastal seawater (Haengwon, Gwideok, Pyoseon, and Yeongnak) in Jeju, Korea. The highest concentrations of DOC and COD in groundwater were found in Woljeong and Pyoseon, and those in coastal water were observed in Haengwon and Pyoseon, indicating that the higher concentrations of DOC and COD seem to be associated with saline groundwater-driven dissolved organic matter (DOM) and/or biogeochemical processes. According to origin and optical properties of DOM using FDOM as a tracer, proportion of humic-like FDOM, more refractory DOM, was relatively greater in the groundwater than in the coastal water. With regard to this result, there was no relationship between DOC and COD in groundwater, while DOC showed a good positive correlation (r2 = 0.66) with COD in coastal water. This result indicates that COD as an indicator of assessment of DOM has a limitation in which it is difficult to quantify refractory DOM. Although DOC is a potential alternative to COD in the coastal environments, particulate organic carbon cannot be negligible due to relatively higher concentration compared to the open ocean. Therefore, the use of total organic carbon (TOC) as a replacement of COD in the coastal ocean is important, and the evaluation criterion of the TOC is necessary in order to evaluate of organic matter indicator in the various coastal environments.

Algal Contribution to the Occurrence of Refractory Organic Matter in Lake Paldang, South Korea: Inferred from Dual Stable Isotope (13C and 15N) Tracer Experiment (팔당호 난분해성 유기물에 대한 조류기원 유기물의 기여)

  • Lee, Yeonjung;Ha, Sun-Yong;Hur, Jin;Shin, Kyung-Hoon
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.3
    • /
    • pp.192-201
    • /
    • 2019
  • While a fairly large amount of organic matter is produced daily via phytoplankton photosynthesis in Lake Paldang, South Korea, knowledge of the role of algal-derived organic matter (OM) as a refractory OM source is not adequate. To understand the contribution of algal-derived OM to the refractory pool, biodegradation experiment and $KMnO_4$ oxidation experiment were conducted for 60 days using $^{13}C$ and $^{15}N$ labeled natural phytoplankton assemblage. The assemblage was collected from Lake Paldang on May 20, 2010. The photosynthetically produced total organic carbon ($TO^{13}C$), particulate organic carbon ($PO^{13}C$), and particulate nitrogen ($P^{15}N$) remained at 26%, 20%, and 17% of the initial concentrations, respectively, in the form of non-biodegradable organic matter. In addition, 12% and 38% of $PO^{13}C$ remained after $KMnO_4$ treatment on Day 0 and 60, respectively. These results indicate that photosynthetic products could be an important source of refractory organic matter after microbial degradation. Moreover, the microbially transformed algal-derived OM could contribute to the oxidation rate of the chemical oxygen demand.

Chemical Properties and Source Profiles of Particulate Matter Collected on an Underground Subway Platform

  • Ma, Chang-Jin;Lee, Kyoung-Bin;Kim, Shin-Do;Sera, Koichiro
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.2
    • /
    • pp.165-172
    • /
    • 2015
  • Under a very tough situation that there has been increasing concern to the air quality in underground subway spaces, this study set sights on the thorough estimation of the chemical properties and source apportionment of particulate matter (PM) collected on an underground subway platform by a cooperative approach of semi-bulk and single particle analyses. The size-resolved PMs were intensively collected on the platform of Miasageori station on the Seoul Subway Line-4, and then, they were semibulkily analyzed by a PIXE and the TOR$^{(R)}$ method, and individually analyzed by a SEM-EDX. Overwhelmingly enriched iron was a notable feature of elemental concentration of $PM_{2.5}$. Source classification of iron in $PM_{10-2.5}$ and $PM_{2.5}$ performed along with their elemental concentrations, indicates that the railway originated iron accounts for 95.71% and 66.39% of total iron in $PM_{10-2.5}$ and $PM_{2.5}$, respectively. Via a stoichiometric categorization, $Fe_2O_3$, $CaAl_2Si_2O_8$, $Al_2O_3$, and $CaCO_3$ show more than 85% abundance ratio in individual coarse particles. The result of theoretical estimation of the subway derived organic carbon ($OC_{Subway}$) suggests that $OC_{Subway}$ in $PM_1$ and $PM_{2.5-1}$ account for 75.86% and 51.88% of total organic carbon, respectively.

Runoff Characteristics of Refractory Organic Matters from Han River Basin during Dry Days (비강우시 한강수계 하천의 연간 난분해성 물질 유출특성)

  • Heo, Sanghoi;Im, Jiyeol;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.19 no.3
    • /
    • pp.353-358
    • /
    • 2017
  • As a drinking water source of 26 millions people of Seoul metropolitan region, Han river is one of the most important basin. Managing the Non-point source pollution which is regarded as the main cause of water pollution including refractory organic matter is important thing. This research investigates the runoff characteristics of organic matters from main 3 rivers (South Han, North Han, Kyungan). Water quality measurement items include not only carbon-based TOC (Total Organic Carbon), DOC (Dissolved Organic Carbon), POC (Particulate Organic Carbon) but also R-TOC (Refractory Total Organic Carbon), R-DOC (Refractory Dissolved Organic Carbon), R-POC (Refractory Particulate Organic Carbon) is researched. The research shows that R-TOC takes approximately 61~83% of TOC. Most of the R-TOC is consist of R-DOC (72~77%). Refractory organic matter have a stable runoff characteristics compared to other organic matter. The organic matter concentrations of South Han river and Kyungan river are the highest in spring time and show a gradual decline. The concentrations of Kyunan river is the highest. Kyungan river's small area and the high city land use ratio seem to be the reason. Loading of organic matter in summer time takes the most loading (62~84%). TOC loadings per unit area of each river is Kyungan river ($1.22ton/km^2$), South Han river ($1.01ton/km^2$), North Han river ($0.91ton/km^2$).

Characterization of Natural Organic matter by Rapid Mixing Condition (급속교반조건에서 Alum 응집제의 가수분해종 분포특성과 유기물특성변화)

  • Song, Yu-Kyung;Jung, Chul-Woo;Son, Hee-Jong;Sohn, In-Shik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.4
    • /
    • pp.559-571
    • /
    • 2006
  • The overall objective of this research was to find out the interrelation of coagulant and organic matter during rapid mixing process and to identify the change of organic matter by mixing condition and to evaluate the effect of coagulation pH. During the coagulation, substantial changes in dissolved organics must be occurred by coagulation due to the simultaneous formation of microflocs and NOM precipitates. Increase in the organic removal efficiency should be mainly caused by the removal of microflocs formed during coagulant injection. That is, during the mixing period, substantial amount of dissolved organics were transformed into microflocs due to the simultaneous formation of microflocs and NOM precipitates. The results also showed that 40 to 80% of dissolved organic matter was converted into particulate material after rapid mixing process of coagulation. During the rapid mixing period, for purewater, formation of dissolved Al(III) (monomer and polymer) constant by rapid mixing condition, but for raw water, the species of Al hydrolysis showed different result. During the rapid mixing period, for high coagulant dose, Al-ferron reaction increases rapidly. At A/D(Adsorption and Destabilization) and sweep condition, both $Al(OH)_3(s)$ and dissolved Al(III) (monomer and polymer) exist, concurrent reactions by both mechanism appear to cause simultaneous precipitation.