• Title/Summary/Keyword: Particulate organic matter

Search Result 259, Processing Time 0.026 seconds

A Study on the Combustion Characteristics of Organic Insulation Materials According to the Gas Toxicity Evaluation Method (가스유해성 평가방법에 따른 유기단열재의 연소특성에 관한 연구)

  • Shim, Ji-Hun;Lee, Jae-Geol;Han, Kyoung-Ho;Kim, Ju-Wan;Song, Seok-Hun;Jo, Hyung-Won;Yoon, Do-Young
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.519-524
    • /
    • 2022
  • Domestic building finishing materials are being evaluated according to KS F 2271 standards according to the notification of the Ministry of Land, Infrastructure and Transport, and this test is evaluated using laboratory animals. In this study, experiments were conducted on highly combustible organic insulation materials such as EPS, urethane, and phenolic foam. The purpose of this study was to analyze the cause of the behavioral suspension of the experimental mice by measuring the average behavioral suspension time of the mice caused by the harmful gas generated when these three types of insulation materials were burned. FTIR analysis and smoke density experiment were performed as a cause analysis method for the behavioral suspension of mice, and the experimental results were analyzed by dividing the causes of behavioral suspension into suffocation by particulate matter and toxic inhalation by gaseous substances. As a result of the test, urethane was evaluated as the most harmful insulation material, and as a result of FTIR analysis and smoke density test as a cause analysis for the gas toxicity test results, it is judged that the behavioral stop of the rats by suffocation is higher than the effect of toxic inhalation. This study is a basic study on the cause analysis of harmful gases, and it will be necessary to prepare the toxicity basis and analyze various materials and gases.

Concentration Variations in Primary and Secondary Particulate Matter near a Major Road in Korea

  • Ghim, Young Sung;Won, Soo Ran;Choi, Yongjoo;Chang, Young-Soo;Jin, Hyoun Cher;Kim, Yong Pyo;Kang, Chang-Hee
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.1
    • /
    • pp.32-41
    • /
    • 2016
  • Particle-phase concentrations were measured at 10, 80, and 200 m from the roadside of a national highway near Seoul in January and May 2008. The highway has two lanes each way, with an average hourly traffic volume of 1,070 vehicles. In January 2008, $PM_{10}$ concentrations decreased from 10 to 80 m but increased at 200 m. Black carbon (BC) decreased only slightly with distance due to the influence of biomass burning and open burning from the surrounding areas. In May 2008, the effect of secondary formation on both $PM_{10}$ and $PM_{2.5}$ was significant due to high temperatures compared with January. Because on-road emissions had little effect on secondary formation for a short time, variations in $PM_{10}$ concentrations became smaller, and $PM_{2.5}$ concentrations increased with distance. The effects of fugitive dust on PM concentrations were greater in May than in January when the mean temperature was below freezing. In the composition variations, the amounts of primary ions, organic carbon (OC), and BC were larger in January, while those of secondary ions and others were larger in $PM_{10}$, as well as $PM_{2.5}$ in May.

The investigation of combined ventilation-biofilter systems using recycled treated wastewater on odor reduction efficiency

  • Febrisiantosa, Andi;Choi, Hong L.;Renggaman, Anriansyah;Sudiarto, Sartika I.A.;Lee, Joonhee
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.7
    • /
    • pp.1209-1216
    • /
    • 2020
  • Objective: The present study aimed to evaluate the performance of odor abatement by using two different ventilation-biofilter systems with recycled stablized swine wastewater. Methods: The performance of odor removal efficiency was evaluated using two different ventilation-biofilter-recycled wastewater arrangements. A recirculating air-flow ventilation system connected to a vertical biofilter (M1) and a plug-flow ventilation system connected to a horizontal biofilter (M2) were installed. Water dripping over the surface of the biofilter was recycled at a flow rate of 0.83 L/h in summer and 0.58 L/h in winter to reduce odorous compounds and particulate matter (PM). The experiments were performed for 64 days with M1 and M2 to investigate how these two ventilation-biofilter systems influenced the reduction of odor compounds in the model houses. Odorous compounds, NH3 and volatile organic compounds (VOCs) were analyzed, and microclimatic variables such as temperature, humidity, and PM were monitored. Results: Ammonia concentration inside M1 was about 41% higher on average than that in M2. PM and total suspended particles (TSPs) inside M1 were about 62.2% and 69.9%, respectively, higher than those in M2. TSPs in the model house were positively correlated with the concentration of NH3 and VOCs. Conclusion: M2 emitted lower concentration of odorous compounds than M1. Moreover, M2 could maintain the optimum temperature condition for a swine house during the cooler season. The plug-flow ventilation-horizontal biofilter system could be used for pig houses to minimize air pollution produced by swine farming activities and maintain optimum microclimate conditions for pigs.

Indoor and Outdoor Air Quality and Its Relation to Allergic Diseases among Children: A Case Study at a Primary School in Korea

  • Kim, Ho-Hyun;Kim, Chang-Soo;Lim, Young-Wook;Suh, Min-A;Shin, Dong-Chun
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.3
    • /
    • pp.157-165
    • /
    • 2010
  • The purpose of this study is to investigate allergic diseases related to allergy caused by the exposure to indoor and outdoor sources of air pollution in primary schools. The symptoms questionnaire of allergic diseases based on the International Study of Asthma and Allergies in Childhood (ISAAC) was completed by the participants. The past and present status of asthma, allergic rhinitis, eczema, and allergic conjunctivitis were investigated by providing a questionnaire to all the participating children. Questionnaires were sent to a total of 61,350 children from 438 primary schools. A total of 40,522 children responded to the questionnaire, which represents a 66.1% return rate. Volatile Organic Compounds (VOCs), $\underline{A}$ldehydes, and Particulate Matter ($PM_{10}$) were measured and analyzed from October to December of 2006, in 82 primary schools. The final study population comprised 35,168 children with complete data which excluded incomplete questionnaire responded by 5,354 children. Based on the survey, the level of indoor air contamination did not appear to be high, but 27.2% of the schools evaluated had exceeded the $PM_{10}$ level specified by the school health guidelines ($100\;{\mu}g/m^3$). The overall mean concentration of formaldehyde was $22.07\;{\mu}g/m^3$ and 1.0% of schools (1 school) exceeded the $100\;{\mu}g/m^3$. Statistically significant relationships have been observed between indoor air quality and prevalence rate of allergic rhinitis and conjunctivitis of primary schools in Korea.

Economical Ventilation Effectiveness to Reduce Hazardous Chemical Emissions for a Nail-Salon Worker

  • KWON, Woo-Taeg;JUNG, Min-Jae;LEE, Woo-Sik;KWON, Lee-Seung;SO, Young-Jin
    • Journal of Distribution Science
    • /
    • v.17 no.7
    • /
    • pp.65-76
    • /
    • 2019
  • Purpose - The purpose of this study is to investigate economical ventilation effectiveness to reduce hazardous materials exposure and damage of workers by analyzing exposure amount of noxious substances under various ventilation conditions of nail salon for indoor environments. Research design, data, and methodology - This study was carried out with cooperation of Nail shop located in SeongNam city to involve an analysis of the environmental impact indoor air quality, pollutant exposure and economical cost-effectiveness in the nail workplace. The hazardous substances were PM-10(Particulate Matter-10㎛), VOCs(Volatile Organic Compounds) and Formaldehyde, which are the major materials of nail workplace. Results - PM-10 is reduced by about 60% with air cleaner, forced artificial ventilation by 32%, and natural ventilation by about 12%. TVOCs and Formaldehyde showed similar efficiency (80~100%) after natural ventilation and ventilation after 60 minutes. The removal efficiencies of VOCs and formaldehyde were similar to those of natural ventilation and mechanical ventilation system. However, in case of dust, natural ventilation was reduced by artificial ventilation system due to inflow of external dust during natural ventilation. Conclusions - If the pollution degree of outdoor air is not high, air volume is high, and natural ventilation is performed when the air conditioning and heating system is not operated. Even at the end of the work, it keeps operating for 60 minutes to remove the pollutants generated. Results of this analysis demonstrated that the worker environment can be improved by adopting institutional legislation and guidelines for ventilation.

Numerical Simulation for the Prediction of PAHs in Jinhae Bay using EMT-3D Model (EMT-3D 모델을 이용한 진해만 PAHs의 거동 예측 시뮬레이션)

  • Kim, Dong-Myung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.1
    • /
    • pp.7-13
    • /
    • 2011
  • The behavior prediction of PAHs in Jinhae Bay using a three-dimensional ecological model(EMT-3D) was examined. A three-dimensional ecological model(EMT-3D) was applied to the simulation of PAHs behaviors in Jinhae Bay of Korea. The computed results of simulation were in good agreement with the observed values. The result of sensitivity analysis showed that photolysis coefficient and extinction coefficient were important factors in the variation of dissolved PAHs, and POC partition coefficient was important factor in the variation of PAHs in particulate organic matter. In the case of PAHs in phytoplankton, bioconcentration factor of plankton was the most significant and the most effective in all. In simulations of 30%, 50% and 80% reduction in total loads of PAHs, the concentrations of dissolved PAHs were shown to be lower than 24 ng/L, 20 ng/L and 16 ng/L, respectively.

Food-Web Structures in the Lower Trophic Levels of the Korean Seas (East Sea, West Sea, South Sea, and East China Sea) during the Summer Season: Using Carbon and Nitrogen Stable Isotopes (하계 한반도 해역(동해, 서해, 남해 및 동중국해)의 하위영양단계 먹이망 구조 : 탄소 및 질소 안정동위원소 활용)

  • Min, Jun-Oh;Lee, Chang-Hwa;Youn, Seok-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.5
    • /
    • pp.493-505
    • /
    • 2020
  • Food web structures in the lower trophic levels of the seas around the Korean peninsula were investigated in August 2019 using stable isotopes. There were variable ratios of the carbon (-26.18 ~ -20.61 ‰) and nitrogen stable (5.36 ~ 15.20 ‰) isotopes in the particulate organic matter (POM). Most of the organisms ingested micro-POM as a major food source, but this varied spatially. The chaetognaths (3.40 ± 0.61) occupied the highest trophic level. The isotope mixing model showed that the proportions (13 ~ 51 %) of some organisms (i.e., copepods and euphausiids) reflected the relative contributions as major food sources for chaetognaths at each site.

Formation of Sedimentation Pool within Irrigation Reserviors for Water Quality Improvement (저수지 수질개선을 위한 저수지 내 침전지 조성)

  • 박병흔
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.1
    • /
    • pp.73-82
    • /
    • 2000
  • Large quantitive of polllutants are washed into reservoirs during storm events. These polllutants contribute to eutrophication, such as algal blooms and fish kills. This study was conducted for the purpose of assessing the pollutant removal possibilities of sedimentation pool formed by deep dredging of a reservoir inlet. Water quality data were collected in the Masan reservoir, whose inlet has been dredged deep like sedimentation pool. The average concentration of chemical oxygen demand(COD) , toatal nitrogen(T-N) and total phosphrous(T-P) in the deep dredged area were 8.7 ~20.5mg/ι (T-N), 0.17~0.84mg/ι(T-P), which were 4.9%(COD), 29.0%(T-N) and 44.8%(T-P) higher than those of middle part of the reservior. The texture of sediment in the dredged area was silty loam, while that of the middle part was sandy clay loam. Organic matter contents, T-N and T-P of the bottom soil in the dredge area showed higher values than the middle part of the reservoirs. From these results, it was considered thedeep dredged area in the inlet of reservoir might play a key role to settle pollutant particulate. Based on the result of water quality analysis, deep dredging of the reservoir inlet could be assessed to reduce T-N and T-P of the reservoir about 6.5% , 8.3%, respectively. However, the effect of the sedimentation pool would be raised if the settled particles were taken into account in assessing water quality improvement for the reservoir. Accordingly, dredging of a reservoir inlet to make a shape of sedimentation pool is recommended for water quality improvement of reservoir in the stage of dredging plan.

  • PDF

PM2.5 Simulations for the Seoul Metropolitan Area: (V) Estimation of North Korean Emission Contribution (수도권 초미세먼지 농도모사: (V) 북한 배출량 영향 추정)

  • Bae, Minah;Kim, Hyun Cheol;Kim, Byeong-Uk;Kim, Soontae
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.2
    • /
    • pp.294-305
    • /
    • 2018
  • Quantitative assessment on the impact from North Korean emissions to surface particulate matter(PM) concentration in the Seoul Metropolitan Area (SMA), South Korea is conducted using a 3-dimensional chemistry transport model. Transboundary transport of air pollutants and their precursors are important to understand regional air quality in East Asian countries. As North Korea locates in the middle of main transport pathways of Chinese pollutants, quantifiable estimation of its impact is essential for policy making in South Korean air quality management. In this study, the Community Multiscale Air Quality Modeling System is utilized to simulate regional air quality and its sensitivity, using the Comprehensive Regional Emissions inventory for Atmospheric Transport Experiment 2015 and the Clean Air Policy Support System 2013 emissions inventories for North and South Korea, respectively. Contributions were estimated by a brute force method, perturbing 50% of North and South Korean emissions. Simulations demonstrate that North Korean emissions contribute $3.89{\mu}g/m^3$ of annual surface PM concentrations in the SMA, which accounts 14.7% of the region's average. Impacts are dominant in nitrate and organic carbon (OC) concentrations, attributing almost 40% of SMA OC concentration during January and February. Clear seasonal variations are also found in North Korean emissions contribution to South Korea (and vice versa) due to seasonal characteristics of synoptic weather, especially by the change of seasonal flow patterns.

Physico-Chemical Characteristics of Visibility Impairment in a National Park Area (국립공원 지역 시정장애 현상의 물리.화학적 특성)

  • Kim, Kyung-Won
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.4
    • /
    • pp.325-338
    • /
    • 2009
  • National parks provide recreation, health, and science to human being. The provision of beautiful landscape view of the national park improves an economic and social phase of a nation. However, visibility impairment frequently occurred in the national park area of Gyeongju. The purpose of this study is to investigate the physical and the chemical characteristics of visibility reduction observed at the national park area of Gyeongju. Optical, chemical, meteorological characteristics and scenic monitoring were performed at the visibility monitoring station of Gyeongju University located at the Seoak section of Gyeongju national park from April 28 to May 9, 2008. Light extinction, light scattering, and light absorption coefficients were continuously measured using a transmissometer, a nephelometer, and an aethalometer, respectively. In order to investigate the impact of aerosol chemistry on visibility impairment, size-resolved aerosols were collected at intervals of 2-hour (from 8 A.M. to 6 P.M.) and 14-hour (from 6 P.M. to 8 A.M.) interval each sampling day. The average light extinction coefficient and the average visual range were measured to be $270{\pm}135\;Mm^{-1}$ and $14.5{\pm}6.3\;km$ during the intensive monitoring period, respectively. It was revealed that sulfate particle was the largest contributor to the light extinction under hazy condition. Organic mass accounted for about 26% of the average light extinction. The mass extinction efficiencies for $PM_{1.0}$, $PM_{2.5}$, and $PM_{10}$ were estimated to be 9.0, 4.7, and $2.7\;m^2\;g^{-1}$ under the consideration of water growth function of hygroscopic aerosols, respectively.