• Title/Summary/Keyword: Particulate organic carbon

Search Result 205, Processing Time 0.035 seconds

Development of Window Filters Using an Electrospinning Technique to Block Particulate Matter and Volatile Organic Compound (미세입자, 휘발성유기화합물 차단을 위한 전기방사 창문 필터)

  • Soon-Ho Kim;Sang-Il Han
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.401-406
    • /
    • 2023
  • With the development of industry, fine dust is causing difficulties in various fields such as environment, health, and life, and a large amount of pollutants generated from human social activities are emerging as a serious environmental problem due to air pollution. Therefore, in this study, activated carbon was added to remove fine dust and volatile organic compounds by spinning cellulose acetate polymer fibers on a silicon support using the electrospinning method. By varying the activated carbon ratio and electrospinning time, the fine dust blocking effect and toluene adsorption performance were confirmed according to the activated carbon ratio and filter thickness. As a result, it was shown that the particles were effectively blocked with the increase in the electrospinning time due to the filter thickness increase. Adsorbed amount of toluene was increased with increase in activated carbon amount. Light transmittance was decrease with increase in electrospinning time, showing that there were light transmittance in filters electrospun for 20~30 minutes.

Climatological variability of surface particulate organic carbon (POC) and physical processes based on ocean color data in the Gulf of Mexico

  • Son, Young-Baek;Gardner, Wilford D.
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.235-258
    • /
    • 2011
  • The purpose of this study is to investigate climatological variations from the temporal and spatial surface particulate organic carbon (POC) estimates based on SeaWiFS spectral radiance, and to determine the physical mechanisms that affect the distribution of pac in the Gulf of Mexico. 7-year monthly mean values of surface pac concentration (Sept. 1997 - Dec. 2004) were estimated from Maximum Normalized Difference Carbon Index (MNDCI) algorithm using SeaWiFS data. Synchronous 7-year monthly mean values of remote sensing data (sea surface temperature (SST), sea surface wind (SSW), sea surface height anomaly (SSHA), precipitation rate (PR)) and recorded river discharge data were used to determine physical forcing factors. The spatial pattern of POC was related to one or more factors such as river runoff, wind-derived current, and stratification of the water column, the energetic Loop Current/Eddies, and buoyancy forcing. The observed seasonal change in the POC plume's response to wind speed in the western delta region resulted from seasonal changes in the upper ocean stratification. During late spring and summer, the low-density river water is heated rapidly at the surface by incoming solar radiation. This lowers the density of the fresh-water plume and increases the near-surface stratification of the water column. In the absence of significant wind forcing, the plume undergoes buoyant spreading and the sediment is maintained at the surface by the shallow pycnocline. However, when the wind speed increases substantially, wind-wave action increases vertical motion, reducing stratification, and the sediment were mixed downward rather than spreading laterally. Maximum particle concentrations over the outer shelf and the upper slope during lower runoff seasons were related to the Loop Current/eddies and buoyancy forcing. Inter-annual differences of POC concentration were related to ENSO cycles. During the El Nino events (1997-1998 and 2002-2004), the higher pac concentrations existed and were related to high runoffs in the eastern Gulf of Mexico, but the opposite conditions in the western Gulf of Mexico. During La Nina conditions (1999-2001), low Poe concentration was related to normal or low river discharge, and low PM/nutrient waters in the eastern Gulf of Mexico, but the opposite conditions in the western Gulf of Mexico.

Effect of Several Native Moss Plants on Particulate Matter, Volatile Organic Compounds and Air Composition

  • Gong, Gyeong Yeop;Kang, Ji Su;Jeong, Kyeong Jin;Jeong, Jun Ho;Yun, Jae Gill
    • Journal of People, Plants, and Environment
    • /
    • v.22 no.1
    • /
    • pp.31-38
    • /
    • 2019
  • Experiments were carried out to investigate the effects of mosses on the removal of particulate matter (PM 10) and volatile organic compounds (VOCs) in an indoor space and on the composition of air. For particulate matter removal experiments, 0.2 g mosquitto coil was burned in a glass chamber, where three kinds of mosses (Plagiomnium cuspidatum, Myuroclada maximowiczii, Etodon luridus) were placed. For VOCs removal experiments, 1 mL paint thinner was volatilized in a glass chamber, where Plagiomnium cuspidatum and Myuroclada maximowiczii were used. As a result, it was found that particulate matter was effectively removed by the three mosses, and the removal efficiency of particulate matter increased as the amount of mosses increased. The amount of VOCs was similar to the level in the control when a low amount of mosses (2 and 4 plates) was used. However, the removal efficiency of VOCs was significant when 6 plates of mosses were used. On the other hand, formaldehyde concentration was 40 times more than the control and carbon monoxide 30 times, when 0.2 g of mosquito repellent was completely burned in a glass chamber. Also formaldehyde removal effect was significant when 6 plates of mosses were placed. However, there was no change in the concentration of indoor oxygen, temperature and humidity by moss plants. In conclusion, the moss plants were effective in removing particulate matter and VOCs, and they are expected to be used for indoor decoration and landscape in order to improve indoor air quality in the future.

On The Biogeochemical Characteristics of Surface Sediments in Chinhae Bay in September 1983

  • YANG Dong Beom;HONG Jae Sang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.21 no.4
    • /
    • pp.195-205
    • /
    • 1988
  • Distribution of organic materials In the surface sediments was investigated in September 1983 in Chinhae Bay System. Bottom waters containing less than 1ml/l of dissolved oxygen were found in Masan Bay, and in part of Kohyonsong Bay and Wonmunpo Bay. Organic carbon content in the surface sediments of Masan Bay was about 25mg/g and it decreased with increasing distance from the inner Masan Bay. Mean organic carbon contents in Wonmunpo Bay and Kohyonsong Bay were 25.48 and 31.39mg/g, respectively, which are higher values than those in Masan Bay where large amount of domestic and industrial wastewaters art discharged into the surface water and extensive phytoplankton occurs almost year round. Mean organic nitrogen and pheophyton contents were also the highest in Kohyonsong Bay amont eight subareas. In Masan Bay, settling of organic materials on the surface sediments seemed to be not significant because of active tidal mixing and relatively small size of particulate materials. In Kohyonsong Bay and Wonmunpo Bay large fecal pellets produced in shellfish farms could be easily settled down on the sediment because of weak current regime. DO content in the bottom waters were low in the organic material rich areas, and that suggests biodegradation of organic materials in the surface sediments could be an important oxygen consuming process during the study period of September 1983.

  • PDF

Organic Compounds in Condensable Particulate Matter Emitted from Coal Combustion (석탄 연소 시 배출되는 응축성 미세먼지의 유기 성분)

  • Jin Park;Sang-Sup Lee
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.279-287
    • /
    • 2023
  • Fine dust emitted from coal combustion is classified into filterable particulate matter (FPM) and condensable particulate matter (CPM). CPM is difficult to control with existing air pollution control devices, so research is being conducted to understand the characteristics of CPM. Components constituting condensable particulate matter (CPM) are divided into inorganic and organic components. There are many quantitative analysis results for the ionic components, which account for a significant proportion of the CPM inorganic components, but little is known about the organic components. Thus, there is a need for a quantitative analysis of CPM organic components. In this study, aromatic hydrocarbons (toluene, ethyl benzene, m,p-xylene, and o-xylene) and n-alkanes with 10 to 30 carbon atoms were quantitatively analyzed to understand the organic components of CPM emitted from a lab-scale coal combustor. Of the aromatic hydrocarbons, toluene accounted for 1.03% of the CPM organic components. On the other hand, the contents of ethyl benzene, m,p-xylene, and o-xylene showed low values of 0.11%, 0.18%, and 0.51% on average, respectively. Among the n-alkanes, triacontane (C30) showed a high content of 2.64% and decane (C10) showed a content of 2.05%. The next highest contents were shown with dodecane (C12), tetradecane (C14), and heptacosane (C27), all of which were higher than that of toluene. The n-alkane substances that had detectable concentrations showed higher contents than ethyl benzene, m,p-xylene, and o-xylene except for tetracosane (C24).

Analysis of Poly Aromatic Hydrocarbon (PAH) Pollutants Originated from Local Road Dust by Spacial Measurements (공간 측정에 의한 도로변 발생 다환방향족탄화수소 연구)

  • Park, Da-Jeong;Cho, In-Hwan;Lee, Kwang-Yul;Park, Kihong;Lee, Yeong-Jae;Ahn, Joon-Young;Bae, Min-Suk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.3
    • /
    • pp.272-279
    • /
    • 2016
  • Understanding sources and contributions of $PM_{2.5}$ mass and particulate PAHs from traffic-related pollution can provide valuable information for alleviating air contamination from car emissions in urban areas. Two sampling sites at the Gwangju Institute of Science and Technology (GIST, $35.228^{\circ}N$, $126.843^{\circ}E$) and National institute of environmental research NamBu Supersite (NNBS, $35.226^{\circ}N$, $126.848^{\circ}E$) were selected for comprehensive road-oriented-PM investigations. Continuous measurements from optical particle sizer (OPS) and optical particle counter (OPC) with 24 hr integrated filter based samplers for organic carbon, water soluble organic carbon, and Poly Aromatic Hydrocarbons (PAHs) were conducted during Nov. 3 through 22 in 2014. As a result, $PM_{2.5}$ mass concentrations using OPC and OPS in NNBS presented about twice higher than in GIST due to road dust impacts based on wind direction analysis. In addition, ratios of elemental carbon (EC) to organic carbon (OC) and water insoluble organic carbon (WIOC) to organic carbon (OC) supported an additional evidence of the primary pollutant contributions oriented from road dust. PAHs related to 5 rings such as benzo(e&a)pyrene indicates higher associations.

Visibility Impairment by Atmospheric Fine Particles in an Urban Area

  • Kim, Young J.;Kim, Kyung W.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.E3
    • /
    • pp.99-120
    • /
    • 2003
  • Visibility impairment in an urban area is mainly caused by airborne fine particulate matters. Visibility in a clean air environment is more sensitive to the change of PM$_{2.5}$ particle concentrations. However, a proportionally larger reduction in fine particle concentration is needed to achieve a small increment of visibility improvement in polluted areas. Continuous optical monitoring of atmospheric visibility and extensive aerosol measurements have been made in the urban atmosphere of Kwangju, Korea. The mean for fine particulate mass from 1999 to 2002 at Kwangju was measured to be 23.6$\pm$20.3 $\mu\textrm{g}$/㎥. The daily average seasonal visual range was measured to be 13.1, 9.2, 11.0, and 13.9 km in spring, summer, fall, and winter, respectively. The mean light extinction budgets by sulfate, nitrate, organic carbon, and elemental carbon aerosol were observed to be 27, 14, 22, and 12%, respectively. It is highly recommended that a new visibility standard and/or a fine particle standard be established in order to protect the health and welfare of general public. Much more work needs to be done in visibility studies, including long-term monitoring of visibility, improvement of visibility models, and formulating integrated strategies for managing fine particles to mitigate the visibility impairment and climate change.e.

Nutrients and Particulate Organic Matter in Asan Bay (아산만의 영양염 및 입자성 유기물)

  • MOON Chang-Ho;PARK Chul;LEE Sung Yong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.26 no.2
    • /
    • pp.173-181
    • /
    • 1993
  • Seasonal distributions of nutrients and particulate organic matter were investigated in Asan Bay, Korea. Most of nutrients were high in August and low in February. The atomic ratios of inorganic nitrogen to phosphorous were close to Redfield ratio except in May when the ratio was 24.8. In May, nutrient concentrations except phosphorous decreased with salinity until $31.5{\sim}32.0%0$, but the concentrations increased again with salinity, impling that there were nutrient input sources within the estuary. Howerer, significant inverse relationships between nutrients and salinity in August suggest that nutrient sources were river discharge. Maximum chlorophyll a concentrations occurred in May. Relatively low ratios of $R_b$ to $R_a$($R_b$: fluorescence before acidification; $R_a$: fluorescence after acidification) during the study periods indicate that phytoplankton were not in good physiological condition. Relatively low ratio of particulate biogenic silica(PBSi) to particulate organic carbon(POC) and high ratios of PBSi and POC to chlorophyll a during the study periods suggest input of non-living detrital PBSi and POC from bottom in Asan Bay, where strong tidal mixing occurs.

  • PDF

Methane Gas Emission from an Artificial Reservoir under Asian Monsoon Climate Conditions, with a Focus on the Ebullition Pathway (아시아 몬순 기후지역에 위치한 대형 인공호에서 기포형태로의 메탄 (CH4) 가스 배출량)

  • Kim, Kiyong;Jung, Sungmin;Choi, Youngsoon;Peiffer, Stefan;Knorr, Klaus-Holger;Kim, Bomchul
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.2
    • /
    • pp.160-167
    • /
    • 2018
  • The role played by reservoirs in the biogeochemical cycles of elements is a subject of ongoing debate. Recent research has revealed that reservoirs emit significant levels of greenhouse gases. To assess the importance of reservoirs in monsoon climate areas as a source of methane gas into the atmosphere, we investigated variations in organic carbon (OC) input into the reservoir, oxic state changes, and finally the amount of methane emitted (focusing on the ebullition pathway) in Lake Soyang, which is the largest reservoir in South Korea. Total organic carbon (TOC) concentrations were higher during summer after two years of heavy rainfall. The sedimentation rates of particulate organic carbon (POC) and particulate organic nitrogen (PON) were higher in the epilimnion and hypolimnion than the metalimnioin, indicating that autochthonous and allochthonous carbon made separate contributions to the TOC. During stratification, oxygen depletion occurred in the hypolimnion due to the decomposition of organic matter. Under these conditions, $H_2S$ and $CH_4$ can be released from sediment. The methane emissions from the reservoir were much higher than from other natural lakes. However, the temporal and spatial variations of methane ebullition were huge, and were clearly dependent on many factors. Therefore, more research via a well-organized field campaign is needed to investigate methane emissions.

Instrumentation of a Thermal-Optical Carbon Analyzer and Its Sensitivity in Organic and Elemental Carbon Determination to Analysis Protocols

  • Lim, Ho-Jin;Sung, Su-Hwan;Yi, Sung-Sin;Park, Jun-Hyun
    • Journal of Environmental Science International
    • /
    • v.21 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • A thermal-optical transmittance carbon analyzer has been developed to determine particulate organic (OC) and elemental (EC) carbon. Several analysis factors affecting the sensitivity of OC and EC determination were investigated for the carbon analyzer. Although total carbon (TC) is usually consistent in the determination, OC and EC split is sensitive to adopted analysis protocol. In this study the maximum temperature in oxygen-free He in the analysis was examined as a main cause of the uncertainty. Prior to the sensitivity analysis consistency in OC-EC determination of the carbon analyzer and the uniformity of carbonaceous aerosol loading on a sampled filter were checked to be in acceptable range. EC/TC ratios were slightly decreased with increasing the maximum temperature between $550-800^{\circ}C$. For the increase of maximum temperature from $500^{\circ}C$ to $800^{\circ}C$, the EC/TC ratio was lowered by 4.65-5.61% for TC loading of 13-44 ${\mu}g/cm^2$ with more decrease at higher loading. OC and EC determination was not influenced by trace amount of oxygen in pure He (>99.999%), which is typically used in OC and EC analysis. The facing of sample loaded surface to incident laser beam showed negligible influence in the OC-EC split, but it caused elevated PC fraction in OC for forward facing relative to backward facing.