• Title/Summary/Keyword: Particulate matter (PM)

Search Result 837, Processing Time 0.029 seconds

Physicochemical Characteristics of Particulate Matter Emitted from Aluminum Casting Process (알루미늄 주조과정에서 배출되는 입자상물질의 물리·화학적 특성)

  • Jeong-Min Suh;Jeong-Ho Park
    • Journal of Environmental Science International
    • /
    • v.33 no.5
    • /
    • pp.297-304
    • /
    • 2024
  • PM (Particulate Matters) was collected from a bag filter dust collector at an aluminum foundries, and its physicochemical properties were investigated using particle size analyzer and scanning electron microscopy with energy dispersive X-ray spectrometer (SEM/EDS). The median volume diameter of the particles passing through the pretreatment dust collector of the cyclone was approximately 10 ㎛. The cyclone pretreatment dust collector was shown to significantly reduce the throughput of large particles with a particle size of 100 ㎛ or more. The chemical composition of the particles showed a high Al content, and trace amounts of Mg, Si, and Zn were detected.

Review of PM-related Air Quality Improvement Policies of United States for PM-related Air Quality Improvement of Metropolitan Region in Korea (수도권 미세먼지 환경 개선을 위한 미국의 대기환경정책 사례 조사 연구)

  • Woo, Jung-Hun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.6
    • /
    • pp.579-593
    • /
    • 2009
  • Several fine particle-related policies in Northeast United States were investigated in support of the execution of special measures to improve air quality of Seoul Metropolitan Area (SMA). The definition of particulate matter (PM) in the Clean Air Act (CAA), components and procedures of Regional Haze Rule (RHR), and Air Quality Management (AQM) were reviewed. Several State Implementation Plans (SIPs) were also reviewed as the way to attain required air quality under the Clean Air Act. $PM_{2.5}$ attainment SIP of Maryland, 8-hr Ozone attainment SIP of New Jersey, and Regional Haze Rule attainment SIP of MANE-VU were analyzed in detail as case studies. We realized that "Special Measures for Air Quality Improvement in the Seoul Metropolitan Area" has many similarities with its US counterparts in terms of purpose, components, procedures, and implementation methods. US policies, however, have more advanced features, such as standardized procedures and methods, transparent guidelines, and stable relationship among federal/state/local governments and stakeholders, which would be helpful to improve air quality in SMA.

EMISSION CHARACTERISTICS IN ULTRA LOW SULFUR DIESEL

  • Oh, S.-K.;Baik, D.-S.;Han, Y.C.
    • International Journal of Automotive Technology
    • /
    • v.4 no.2
    • /
    • pp.95-100
    • /
    • 2003
  • Automobile industry has been developed rapidly as a key manufacturing industry in Korea. Meanwhile, air pollution is getting worse noticeably than ever. In the diesel emission, PM (Particulate Matter) and NOx (Nitrogen Oxides) have been exhausted with a great amount and the corresponding emission regulations are getting stringent. In order to develop low emission engines, it is necessary to research on better qualified fuels. Sulfur contained in fuel is transformed to sulfur compound by DOC (Diesel Oxidation Catalyst) and then it causes to the increase of sulfate-laden PM on the surface of catalyst. In this research, ULSD (Ultra Low Sulfur Diesel) is used as a fuel and some experimental results are investigated. ULSD can reduce not only PM but also gas materials because cetane value, flash point, distillation 90%, pour point and viscosity are improved in the process of desulfurization. However, excessively reduced sulfur may cause to decease lubricity of fuel and engine performance in fuel injection system. Therefore, it requires only modest adjusted amount of sulfur can improve engine performance and DOC, as well as decrease of emission.

Efficiency of Removal of Indoor Pollutants by Pistia stratiotes, Eichhornia crassipes and Hydrocotyle umbellata

  • Park, Hye-Min;Lee, Ae-Kyung
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.1
    • /
    • pp.15-21
    • /
    • 2020
  • In this study, we compared efficiency of different aquatic plants in removing indoor pollutants and examined their potential to purify indoor air. Two liter of water in chamber was used as the control, while the other chambers containing water lettuce (Pistia stratiotes), water hyacinth (Eichhornia crassipes), and water coin (Hydrocotyle umbellata) were used as treatment groups. Temperatures inside all the chambers were maintained between 20 ℃ and 23 ℃. Humidity in the chambers with aquatic plants increased by 30% and 50% control respectively. The removal of formaldehyde per unit leaf area was examined in each aquatic plant. It turned out that water hyacinth removed the highest amount of formaldehyde, followed by water lettuce and water coin. Both water hyacinth and water lettuce increased the amount of removal of formaldehyde until the end of the experiment. In the case of airborne dust (PM 10) and fine dust (PM 2.5), water coin, which had the highest number of leaves, removed more PM 10 and PM 2.5 than the other aquatic plants, with statistically significant difference. In addition, both water coin and water hyacinth smoothly opened and closed stomata before and after the experiment. Consequently, as the aquatic plants were effective in controlling humidity and removing pollutants, they can be used as air purifying plants.

Urban Particulate Matter-Induced Oxidative Damage Upon DNA, Protein, and Human Lung Epithelial Cell (A549): PM2.5 is More Damaging to the Biomolecules than PM10 Because of More Mobilized Transition Metals

  • Song, H-S;Chang, W-C;Bang, W-G;Kim, Y-S;Chung, N
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2002.10a
    • /
    • pp.169-169
    • /
    • 2002
  • The mobilizable amount of transition metals is a fraction of the total amount of the metal from urban particulate matter. Although the fraction is small, some metals (Fe, Cu) are the major participants in a reaction that generates reactive oxygen species (ROS), which can damage various biomolecules. Damaging effects of the metals can be measured by the single strand breakage (SSB) of X174 RFI DNA or the carbonyl formation of protein. In another study, we have shown that more metals are mobilized by PM2.5 than by PM10 in general. DNA SSB of >20% for PM2.5 and >15% for PM10 was observed in the presence of chelator (EDTA or citrate)/reductant (ascorbate), compared to the control (<3%) only with the chelator. The carbonyl formation by both PMs was very similar in the presence of the chelator, regardless of the kind of proteins. Compared to the control in the absence of chelator/reductant, 3.3 times and 4.9 times more carbonyl formation for PM2.5 and PM10, respectively, was obtained with BSA in the presence of chelator/reductant, showing that PM10 induced 33% more damage than PM2.5. However, 4.8 times and 1.9 times more carbonyl formation for PM2.5 and PM10, respectively, was observed with lysozyme in the presence of chelator/reductant, showing that PM2.5 induced 250% more damage than PM10. Although different proteins showed different sensitivities toward ROS, all these results indicate that the degrees of the oxidation of or damage to the biomolecules by the mobilized metals were higher with PM2.5 than with PM10. Therefore, it is expected that more metals mobilized from PM2.5 than from PM10, more damage to the biomolecules by PM2.5 than by PM10. We suggest that when the toxicity of the dust particle is considered, the particle size as well as the mobilizable fraction of the metal should be considered in place of the total amounts.

  • PDF

Assessment of Particulate Matters from an Exhaust Gas for Conventional and Low Temperature Diesel Combustion in a Compression Ignition Engine (압축 착화 엔진에서 기존 및 저온 디젤 연소에서 발생하는 배기가스의 입자상 물질에 관한 특성 비교)

  • Jung, Yongjin;Shin, Hyun Dong;Bae, Choongsik
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.183-186
    • /
    • 2012
  • The characteristics of particulate matters (PM) from an exhaust gas for conventional and low temperature diesel combustion (LTC) in a compression ignition engine was experimentally investigated by the elemental, thermogravimetric analysis. Morphology of PM was also studied by the transmission electron microscopy. PM for LTC shows that it contains more volatile hydrocarbons, which can be easily evaporated than conventional regime. PM for LTC is comprised of smaller primary particles.

  • PDF

Estimation of ambient PM10 and PM2.5 concentrations in Seoul, South Korea, using empirical models based on MODIS and Landsat 8 OLI imagery

  • Lee, Peter Sang-Hoon;Park, Jincheol;Seo, Jung-young
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.1
    • /
    • pp.59-66
    • /
    • 2020
  • Particulate matter (PM) is regarded as a major threat to public health and safety in urban areas. Despite a variety of efforts to systemically monitor the distribution of PM, the limited amount of sampling sites may not provide sufficient coverage over the areas where the monitoring stations are not located in close proximity. This study examined the capacity of using remotely sensed data to estimate the PM10 and PM2.5 concentrations in Seoul, South Korea. Multiple linear regression models were developed using the multispectral band data from the Moderate-resolution imaging spectro-radiometer equipped on Terra (MODIS) and Operational Land Imager equipped on Landsat 8 (Landsat 8) and meteorological parameters. Compared to MODIS-derived models (r2 = 0.25 for PM10, r2 = 0.30 for PM2.5), the Landsat 8-derived models showed improved model reliabilities (r2 = 0.17 to 0.57 for PM10, r2 = 0.47 to 0.71 for PM2.5). Landsat 8 model-derived PM concentration and ground-truth PM measurements were cross-validated to each other to examine the capability of the models for estimating the PM concentration. The modeled PM concentrations showed a stronger correlation to PM10 (r = 0.41 to 0.75) than to PM2.5 (r = 0.14 to 0.82). Overall, the results indicate that Landsat 8-derived models were more suitable in estimating the PM concentrations. Despite the day-to-day fluctuation in the model reliability, several models showed strong correspondences of the modeled PM concentrations to the PM measurements.

Particulate Matter Prediction using Quantile Boosting (분위수 부스팅을 이용한 미세먼지 농도 예측)

  • Kwon, Jun-Hyeon;Lim, Yaeji;Oh, Hee-Seok
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.1
    • /
    • pp.83-92
    • /
    • 2015
  • Concerning the national health, it is important to develop an accurate prediction method of atmospheric particulate matter (PM) because being exposed to such fine dust can trigger not only respiratory diseases as well as dermatoses, ophthalmopathies and cardiovascular diseases. The National Institute of Environmental Research (NIER) employs a decision tree to predict bad weather days with a high PM concentration. However, the decision tree method (even with the inherent unstableness) cannot be a suitable model to predict bad weather days which represent only 4% of the entire data. In this paper, while presenting the inaccuracy and inappropriateness of the method used by the NIER, we present the utility of a new prediction model which adopts boosting with quantile loss functions. We evaluate the performance of the new method over various ${\tau}$-value's and justify the proposed method through comparison.

Estimation of Representative Area-Level Concentrations of Particulate Matter(PM10) in Seoul, Korea (미세먼지(PM10)의 지역적 대푯값 산정 방법에 관한 연구 - 서울특별시를 대상으로)

  • SONG, In-Sang;KIM, Sun-Young
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.4
    • /
    • pp.118-129
    • /
    • 2016
  • Many epidemiological studies, relying on administrative air pollution monitoring data, have reported the association between particulate matter ($PM_{10}$) air pollution and human health. These monitoring data were collected at a limited number of fixed sites, whereas government-generated health data are aggregated at the area level. To link these two data types for assessing health effects, it is necessary to estimate area-level concentrations of $PM_{10}$. In this study, we estimated district (Gu)-level $PM_{10}$ concentrations using a previously developed pointwise exposure prediction model for $PM_{10}$ and three types of point locations in Seoul, Korea. These points included 16,230 centroids of the largest census output residential areas, 422 community service centers, and 610 centroids on the 1km grid. After creating three types of points, we predicted $PM_{10}$ annual average concentrations at all locations and calculated Gu averages of predicted $PM_{10}$ concentrations as representative Gu-estimates. Then, we compared estimates to each other and to measurements. Prediction-based Gu-level estimates showed higher correlations with measurement-based estimates as prediction locations became more population representative ($R^2=0.06-0.59$). Among the three estimates, grid-based estimates gave lowest correlations compared to the other two(0.35-0.47). This study provides an approach for estimating area-level air pollution concentrations and assesses air pollution health effects using national-scale administrative health data.

Health and Economic Burden Attributable to Particulate Matter in South Korea: Considering Spatial Variation in Relative Risk (지역간 상대위험도 변동을 고려한 미세먼지 기인 질병부담 및 사회경제적 비용 추정 연구)

  • Byun, Garam;Choi, Yongsoo;Gil, Junsu;Cha, Junil;Lee, Meehye;Lee, Jong-Tae
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.5
    • /
    • pp.486-495
    • /
    • 2021
  • Background: Particulate matter (PM) is one of the leading causes of premature death worldwide. Previous studies in South Korea have applied a relative risk calculated from Western populations when estimating the disease burden attributable to PM. However, the relative risk of PM on health outcomes may not be the same across different countries or regions. Objectives: This study aimed to estimate the premature deaths and socioeconomic costs attributable to long-term exposure to PM in South Korea. We considered not only the difference in PM concentration between regions, but also the difference in relative risk. Methods: National monitoring data of PM concentrations was obtained, and missing values were imputed using the AERMOD model and linear regression model. As a surrogate for relative risk, hazard ratios (HRs) of PM for cardiovascular and respiratory mortality were estimated using the National Health Insurance Service-National Sample Cohort. The nation was divided into five areas (metropolitan, central, southern, south-eastern, and Gangwon-do Province regions). The number of PM attributable deaths in 2018 was calculated at the district level. The socioeconomic cost was derived by multiplying the number of deaths and the statistical value of life. Results: The average PM10 concentration for 2014~2018 was 45.2 ㎍/m3. The association between long-term exposure to PM10 and mortality was heterogeneous between areas. When applying area-specific HRs, 23,811 premature deaths from cardiovascular and respiratory disease in 2018 were attributable to PM10 (reference level 20 ㎍/m3). The corresponding socioeconomic cost was about 31 trillion won. These estimated values were higher than that when applying nationwide HRs. Conclusions: This study is the first research to estimate the premature mortality caused by long-term exposure to PM using relative risks derived from the national population. This study will help precisely identify the national and regional health burden attributed to PM and establish the priorities of air quality policy.