• Title/Summary/Keyword: Particulate matter(PM)

Search Result 822, Processing Time 0.021 seconds

Investigation on Diesel Injection Characteristics of Natural Gas-Diesel Dual Fuel Engine for Stable Combustion and Efficiency Improvement Under 50% Load Condition (천연가스-디젤 혼소 엔진의 50% 부하 조건에서 제동효율 및 연소안정성 개선을 위한 디젤 분무 특성 평가)

  • Oh, Sechul;Oh, Junho;Jang, Hyungjun;Lee, Jeongwoo;Lee, Seokhwan;Lee, Sunyoup;Kim, Changgi
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.3
    • /
    • pp.45-53
    • /
    • 2022
  • In order to improve the emission of diesel engines, natural gas-diesel dual fuel combustion compression ignition engines are in the spotlight. In particular, a reactivity controlled compression ignition (RCCI) combustion strategy is investigated comprehensively due to its possibility to improve both efficiency and emissions. With advanced diesel direct injection timing earlier than TDC, it achieves spontaneous reaction with overall lean mixture from a homogeneous mixture in the entire cylinder area, reducing nitrogen oxides (NOx) and particulate matter (PM) and improving braking heat efficiency at the same time. However, there is a disadvantage in that the amount of incomplete combustion increases in a low load region with a relatively small amount of fuel-air. To solve this, sensitive control according to the diesel injection timing and fuel ratio is required. In this study, experiments were conducted to improve efficiency and exhaust emissions of the natural gas-diesel dual fuel engine at low load, and evaluate combustion stability according to the diesel injection timing at the operation point for power generation. A 6 L-class commercial diesel engine was used for the experiment which was conducted under a 50% load range (~50 kW) at 1,800 rpm. Two injectors with different spray patterns were applied to the experiment, and the fraction of natural gas and diesel injection timing were selected as main parameters. Based on the experimental results, it was confirmed that the brake thermal efficiency increased by up to 1.3%p in the modified injector with the narrow-angle injection added. In addition, the spray pattern of the modified injector was suitable for premixed combustion, increasing operable range in consideration of combustion instability, torque reduction, and emissions level under Tier-V level (0.4 g/kWh for NOx).

Effect of Eddy on the Cycle of 210Po and 234 in the central Region of Korean East Sea (동해 중부해역에서 210Po과 234Th의 순환에 대한 소용돌이의 영향)

  • YANG, HAN SOEB;KIM, SOUNG SOO;LEE, JAE CHUL
    • 한국해양학회지
    • /
    • v.30 no.4
    • /
    • pp.279-287
    • /
    • 1995
  • The vertical profiles of natural 210Pb, 210Po and 234Th activities were measured for the upper 100 m of water column at three stations in the middle region of the Korean East Sea during May 1992. And the distribution of these radionuclides was discussed associated with the formation of warm eddy or water mass. The main thermocline was maintained between the depth of 50 and 100 m at the southern station (Sta. A1), and between the depth of 10 to 50 m at the coastal station of Sockcho (Sta. B10). Contrastingly, a main thermocline at Sta. A10, which locates near the center of warm eddy, was observed below 230 m depth. Between 50 and 220 m depth of Sta. A10 is there a relatively homogeneous water mass of 10.1${\pm}$0.5$^{\circ}C$, which is significantly higher in temperature and lower in nutrient than the other two stations. It seems to be due to sinking of the warm surface water in which nutrients were completely consumed. Both 210Pb and 210Po show the highest concentration at Sta. A1 and the lowest at Sta. B10 among the three stations. Also, the 210Pb activity is generally higher in the upper layer than in the lower layer, while 210Po activity represents the reversed pattern at all three stations. At Sta. A1 and Sta. B10, the activities of 210Po relative to its parent 210Pb were deficient in the water column above the main thermocline, but were excess below the thermocline. However, the station near the center of warm eddy(Sta. A10), shows no excess of 210Po in the depths below 50 m, although its defficiency is found in the upper layer like the other stations. At Sta. A1 and b10. 234Th activities are slightly lower in the surface mixed layer than in the deeper region However, at Sta. A10, 234Th activity in the upper 30 m is higher than below 50 m or in the same depth of the other stations, probably because of the high concentration of particulate matter. The residence time of 210Po in the surface mixed layer at Sta. A10 is 0.4 year, much shorter than at the other two stations(about one year). Above 100 m depth, the residence times of 234Th range from 18 to 30 other two stations(about on year). Above 100 m depth, the residence times of 234Th range from 18 to 30 days at all stations, without significant regional variation. The percentages of recycled 210Po within the thermocline are 39% and 92% at Sta. A1 and Sta. B10, respectively. Much higher value at Sta. B10 may be due to a thin thickness of the mixed layer as well as the slower recycling rate of 210Po in the main thermocline.

  • PDF