• Title/Summary/Keyword: Particulate flow

Search Result 269, Processing Time 0.032 seconds

Experimental Study on Particle Collection Efficiency of Axial-flow Cyclone in Air Handling Unit (공기조화기 장착용 축상유입식 싸이클론의 입자제거효율에 대한 실험적 연구)

  • Kim, Se-Young;Kwon, Soon-Bark;Park, Duck-Shin;Cho, Young-Min;Kim, Jin-Ho;Kim, Myung-Joon;Kim, Tae-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.3
    • /
    • pp.272-280
    • /
    • 2011
  • A novel particle removal system for air handling unit (AHU) of subway station was evaluated experimentally. The novel system was designed in order to minimize the maintenance cost by applying axial-flow cyclones. The system consists of multiple cyclone units and dust trap. Based on our previous numerical study, it was found to be effective for removal $1\sim10{\mu}m$ sized dust particles. In this study, we manufactured the mock-up model and evaluated the model experimentally. Liquid and solid test particles were generated for evaluating collection efficiency of the system and the pressure drop was monitored. The collection efficiency was varied from 41.2% to 85.9% with increasing the sizes of particle from 1 to $6.5{\mu}m$ by particle count ratio of inlet and outlet. The pressure drop was maintained constant less than $20mmH_2O$. In addition, the collection efficiency was estimated by total mass for solid test particles. It was found that the collection efficiency was 65.7% by particle mass ratio of inlet and outlet. It shows that present system can replace current pre-filters used in subway HVAC system for removing particulate matters with minimal operational cost.

Heat Transfer in Radiatively Participating Gas-Particle Cavity Flows (輻射가 關與하는 氣體-固體粒子 캐비티 流動에서의 熱傳達)

  • 이종욱;이준식;이택식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.551-560
    • /
    • 1988
  • Gas-particle two phase flow and heat transfer in a cavity receiving thermal radiation through selectively transparent walls have been analyzed by a finite difference method. Particles injected from the upper hole of the cavity are accelerated downward by gravity and exit through the lower hole while they absorb, emit and scatter the incident thermal radiation. Gas phase is heated through convection heat transfer from particles, and consequently buoyancy induced flow field is formed. Two-equation model with two-way coupling is adopted and interaction terms are treated as sources by PSI-Cell method. For the particulate phase, Lagrangian method is employed to describe velocities and temperatures of particles. As thermal radiation is incident upon horizontally, radiative heat transfer in the vertical direction is assumed negligible and two-flux model is used for the solution of radiative heat flus. Gas phase velocity and temperature distributions, and particle trajectories, velocities and temperatures are presented. The effects of particle inlet condition, particle size, injection velocity and particle mass rate are mainly investigated.

Experimental investigation of aerosols removal efficiency through self-priming venturi scrubber

  • Ali, Suhail;Waheed, Khalid;Qureshi, Kamran;Irfan, Naseem;Ahmed, Masroor;Siddique, Waseem;Farooq, Amjad
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2230-2237
    • /
    • 2020
  • Self-priming venturi scrubber is one of the most effective devices used to collect aerosols and soluble gas pollutants from gaseous stream during severe accident in a nuclear power plant. The present study focuses on investigation of dust particle removal efficiency of the venturi scrubber both experimentally and theoretically. Venturi scrubber captures the dust particles in tiny water droplets flowing into it. Inertial impaction is the main mechanism of particles collection in venturi scrubber. The water injected into venturi throat is in the form of jets through multiple holes present at venturi throat. In this study, aerosols removal efficiency of self-priming venturi scrubber was experimentally measured for different operating conditions. Alumina (Al2O3) particles with 0.4-㎛ diameter and 3950 kg/㎥ density were treated as aerosols. Removal efficiency was calculated for different gas flow rates i.e. 3-6 ㎥/h and liquid flow rates i.e. 0.009-0.025 ㎥/h. Experimental results depict that aerosols removal efficiency increases with the increase in throat velocity and liquid head. While at lower air flow rate of 3 ㎥/h, removal efficiency decreases with the increase in liquid head. A theoretical model of venturi scrubber was also employed and experimental results were compared with mathematical model. Experimental results are found to be in good agreement with theoretical results.

Verification of dilution ratio of the newly developed ejector-porous tube diluter for measurement of fine dust in coal-fired power plant stack (화력발전소 굴뚝 미세먼지 측정을 위해 개발한 이젝터-다공튜브 희석장치의 희석비 검증)

  • Shin, Dongho;Kim, Young-Hoon;Hong, Keejung;Kim, Hak-Joon;Kim, Yong-Jin;Han, Bangwoo;Lee, Ga-Young;Chun, Sung-Nam;Hwang, Jungho
    • Particle and aerosol research
    • /
    • v.15 no.3
    • /
    • pp.105-113
    • /
    • 2019
  • The exhaust emissions from coal-fired power plants have received much attention because coal-fired power plants are the one of the largest sources of particulate matter (PM) emissions in South Korea. To measure the PM10 and PM2.5, we developed the novel diluter which is comprised of ejector and porous tube in series. The dilution ratio must be defined to calculate particle concentrations of the sampled air as well as to probe match for the isokinetic sampling. For this reason, we verified the dilution ratio of the developed diluter by the flow rate, numerical solution, gas concentration and particle concentration. The ejector-supplied flow rates were 10-50 L/min and the porous tube-supplied flow rates were 30, 50 L/min in this study. All methods above showed similar dilution ratios to each other within 10 % error rate. The dilution ratio was confirmed by comparing mass concentrations before and after the dilution process.

Recycling of Suspended Particulates by Atmospheric Boundary Depth and Coastal Circulation (대기경계층과 연안순환에 의한 부유입자의 재순환)

  • Choe, Hyo
    • Journal of Environmental Science International
    • /
    • v.13 no.8
    • /
    • pp.721-731
    • /
    • 2004
  • The dispersion of suspended particulates in the coastal complex terrain of mountain-inland basin (city)-sea, considering their recycling was investigated using three-dimensional non-hydrostatic numerical model and lagrangian particle model (or random walk model). Convective boundary layer under synoptic scale westerly wind is developed with a thickness of about I km over the ground in the west of the mountain, while a thickness of thermal internal boundary layer (TIBL) is only confined to less than 200m along the eastern slope of the mountain, below an easterly sea breeze circulation. At the mid of the eastern slop of the mountain, westerly wind confronts easterly sea breeze, which goes to the height of 1700 m above sea level and is finally eastward return flow toward the sea. At this time, particulates floated from the ground surface of the city to the top of TIBL go along the eastern slope of the mountain in the passage of sea breeze, being away the TIBL and reach near the top of the mountain. Then those particulates disperse eastward below the height of sea-breeze circulation and widely spread out over the coastal sea. Total suspended particulate concentration near the ground surface of the city is very low. On the other hand, nighttime radiative cooling produces a shallow nocturnal surface inversion layer (NSIL) of 200 m thickness over the inland surface, but relatively thin thickness less than 100m is found near the mountain surface. As synoptic scale westerly wind should be intensified under the association of mountain wind along the eastern slope of mountain to inland plain and further combine with land-breeze from inland plain toward sea, resulting in strong wind as internal gravity waves with a hydraulic jump motion bounding up to about 1km upper level in the atmosphere in the west of the city and becoming a eastward return flow. Simultaneously, wind near the eastern coastal side of the city was moderate. Since the downward strong wind penetrated into the city, the particulate matters floated near the top of the mountain in the day also moved down along the eastern slope of the mountain, reaching the. downtown and merging in the ground surface inside the NSIL with a maximum ground level concentration of total suspended particulates (TSP) at 0300 LST. Some of them were bounded up from the ground surface to the 1km upper level and the others were forward to the coastal sea surface, showing their dispersions from the coastal NSIL toward the propagation area of internal gravity waves. On the next day at 0600 LST and 0900 LST, the dispersed particulates into the coastal sea could return to the coastal inland area under the influence of sea breeze and the recycled particulates combine with emitted ones from the ground surface, resulting in relatively high TSP concentration. Later, they float again up to the thermal internal boundary layer, following sea breeze circulation.

Spacio-temporal Analysis of Urban Population Exposure to Traffic-Related air Pollution (교통흐름에 기인하는 미세먼지 노출 도시인구에 대한 시.공간적 분석)

  • Lee, Keum-Sook
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.11 no.1
    • /
    • pp.59-77
    • /
    • 2008
  • The purpose of this study is to investigate the impact of traffic-related air pollution on the urban population in the Metropolitan Seoul area. In particular, this study analyzes urban population exposure to traffic-related particulate materials(PM). For the purpose, this study examines the relationships between traffic flows and PM concentration levels during the last fifteen years. Traffic volumes have been decreased significantly in recent year in Seoul, however, PM levels have been declined less compare to traffic volumes. It may be related with the rapid growth in the population and vehicle numbers in Gyenggi, the outskirt of Seoul, where several New Towns have been developed in the middle of 1990's. The spatial pattern of commuting has changed, and thus and travel distances and traffic volumes have increased along the main roads connecting CBDs in Seoul and New Towns consisting of large residential apartment complexes. These changes in traffic flows and travel behaviors cause increasing exposure to traffic-related air pollution for urban population over the Metropolitan Seoul area. GIS techniques are applied to analyze the spatial patterns of traffic flows, population distributions, PM distributions, and passenger flows comprehensively. This study also analyzes real time base traffic flow data and passenger flow data obtained from T-card transaction database applying data mining techniques. This study also attempts to develop a space-time model for assessing journey-time exposure to traffic related air pollutants based on travel passenger frequency distribution function. The results of this study can be used for the implications for sustainable transport systems, public health and transportation policy by reducing urban air pollution and road traffics in the Metropolitan Seoul area.

  • PDF

Planting Design Strategies and Green Space Planning to Mitigate Respirable Particulate Matters - Case Studies in Beijing, China - (미세먼지 저감을 위한 식재기법 및 도시 녹지계획 방향 - 중국 베이징시 사례를 중심으로 -)

  • Xu, Xi-ran;Kim, Jin-Oh
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.6
    • /
    • pp.40-49
    • /
    • 2017
  • The purpose of the research is to analyze the recent cases of green space planning and planting design in Beijing, one of the cities having the worst particulate matters (PM) pollution. This study comprehensively reviewed Chinese academic literature addressing green space planning to reduce PM pollution. In addition, we conducted field observations and interviews with public officials from Beijing Municipal Bureau of Landscape Design in charge of planning and management of green spaces in Beijing. After the extensive review of literature we derived tree planting principles to mitigate the impact of PM from urban road system, residential area, and industrial district. Using the principles we evaluated the three recent cases of planting design to mitigate PM: Beijing Fuxing Road, Fu Run Residential Area and Beijing Beiqi Multipurpose Vehicle Factory. We conclude that green space planning and trees planting are not effective in mitigating negative impact of PM pollution because of inadequate selection of trees and inconsiderate planting composition. We proposed to replace the tree species with the ones capable of reducing the spread of PM, and reorganize planting compositions that consider the directions and characteristics of urban wind flow. This study suggests desirable types of tree species and planting compositions for road, residential and industrial districts, and we expect that it provides helpful guidelines for making planting design and species selection to mitigate the impact of PM in urban landscape.

Particulate Matter from Asian Dust Storms Induces the Expression of Proinflammatory Cytokine in A549 Epithelial Cells (PM10이 A549 Cells에서 전염증성 Cytokine발현에 미치는 영향)

  • Kim, Jung Ho;Jeon, Hyo Keun;Kim, Mi Kyeong;Kyung, Sun Yong;An, Chang Hyeok;Lee, Sang Pyo;Park, Jung Woong;Jeong, Sung Hwan
    • Tuberculosis and Respiratory Diseases
    • /
    • v.60 no.6
    • /
    • pp.663-672
    • /
    • 2006
  • Background: $PM_{10}$(Particulate matter with a diameter ($<10{\mu}m$), which is characterized by different environmental conditions, is a complex mixture of organic and inorganic compounds. The Asian dust event caused by meteorological phenomena can also produce unique particulate matter in affected areas. This study investigated the cytokine produced by A549 epithelial cells exposed to particles collected during both the Asian dust pfenomenon and ambient air particles in a non-dusty period. Method: Air samples were collected using a high volume air sampler(Sibata Model HV500F) with an air flow at $500{\ell}/min$ for at least 6 hours. The cytokine messenger RNA(mRNA) was measured using a reverse transcriptase polymerase chain reaction(RT-PCR). The A549 cells were exposed to 10 to $500{\mu}g/m{\ell}$ of a suspension containing $PM_{10}$ for 24 hours. Each was compared with those in the non-exposed control cells. Result: The mRNA levels of interleukin(IL)-$1{\alpha}$, $IL-I{\beta}$, IL-8, and the granulocyte macrophage colony stimulating factor(GM-CSF) increased after veing exposed to $PM_{10}$ in the ambient air particles, compared with those in the non-exposed control cells. The increase in $IL-1{\alpha}$ and IL-8 were dose dependent at a $PM_{10}$ concentration between $100{\mu}g/m{\ell}$ and $500{\mu}g/m{\ell}$. The mRNA level of IL-8 in the A549 epithelial cells was higher during the in the Asian dust period($500{\mu}g/m{\ell}$) than during the non dust period. Conclusion: A549 cells exposed to the $PM_{10}$ collected during the Asian dust period produce more proinflammatory cytokine than during non-dusty period. This cytokine enhances the local inflammatory response in the airways and can also contribute to the systemic component of this inflammatory process.

Mechanism of Oxygen-Deficient Water Formation in Jindong Bay (진동만의 빈산소수괴 형성기구)

  • 김동선;김상우
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.2
    • /
    • pp.177-186
    • /
    • 2003
  • The influences of horizontal and vertical flow components including the stratification of water column and the wind field on the formation of oxygen-deficient water in summer in Jindong Bay, northern part of Chinhae Bay, were examined. Temperature, salinity and dissolved oxygen in seawater, and direction and velocity of wind were observed in Jindong Bay from March 1998 to February 1999. Low concentration of 5 mg/L in dissolved oxygen (DO) appeared at the bottom layer from May to September. Extremely low DO concentration less than 3 mg/L was investigated in summer (July to August) when stratification was strongest due to abrupt vertical gradients of temperature and salinity in water column. Bottom waters with the extremely low DO concentration were observed even in spring (May to June) at the inner part of the bay. In summer (August to September), the bottom waters with the low DO concentration (less than 5 mg/L) existed at the water depth from 4 to 6 m, being moved upward to the surface layer compared to other seasons. Vertical components of residual flow, calculated by the direction and velocity of wind, in Jindong Bay in summer showed that locally prevailed northerly and westerly wind resulted in downwelling flow at the outer part of the bay and conversely, upwelling at the inner part of the bay. In addition, bottom current at the outer part corresponding to the downwelling area directed to the inner part, probably resulting in a transport of the particulate organic matter settled at the bottom waters to the inner part of the bay. The oxygen-deficient watermass, which was formed at the bottom layer of the inner part, was likely to transported to the surface layer by the upwelling flow.

Applications of Improved Low-Flow Mortar Type Grouting Method for Road Safety and Constructability in Dangerous Steep Slopes (급경사지 붕괴 위험지역의 도로 안전 및 시공성을 고려한 개선된 저유동 몰탈형 그라우팅공법 적용성 분석)

  • Choi, Gisung;Kim, Seokhyun;Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.4
    • /
    • pp.409-415
    • /
    • 2020
  • Low-flow mortar injection method grouting technology was selected and the traffic area was preserved as much as possible in order to secure safety for road traffic when the outflow and subsidence of landfill occurred due to ground-water, and etc. In particular, the current existing method was newly improved since there are risks of damage such as hydraulic fracturing at the lower part of the road, spilling of soil particles on steep slopes, and bumps on the road due to excessive injection pressure during construction. This study was carried out at the site of reinforcement work on the road as a maintenance work for the danger zone for collapse of the steep slope of the 00 hill, which was ordered from the 00 city 00 province. The improved low-flow mortar type grouting method adopted a new automated grouting management system and especially, it composites the method for grouting conditions decision by high-pressure pre-grouting test and injection technology by AGS-controlled and studied about grouting effect analysis by using new technology. By applying the improved low-flow mortar type grouting method, it was possible to lay the groundwork for road maintenance work such as the prevention of subsidence of old roads, uneven subsidence of buildings and civil engineering structures, and of soil leakage of ground-water spills. Furthermore, the possibility of application on future grouting work not only for just construction that prevents subsidence of old roads but also for various buildings and civil engineering structures such as railroads, subways, bridges, underground structures, and boulder stone and limestone areas was confirmed.