• Title/Summary/Keyword: Particulate emissions

Search Result 338, Processing Time 0.023 seconds

A Field Survey on the Characteristics of Air Pollutants Emission from Commercial Charcoal Kiln (숯가마에서 발생하는 대기오염물질의 배출특성에 관한 현장조사 연구)

  • Park, Seong-Kyu;Choi, Sang-Jin;Kim, Jin-Yun;Park, Gun-Jin;Hwang, Ui-Hyun;Lee, Jeong-Joo;Kim, Tae-Sik
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.5
    • /
    • pp.601-614
    • /
    • 2013
  • The commercial charcoal kiln was projected the largest source of biomass burning sector in Korea. Commercial charcoal kiln was operated to emit air pollutants into the air without any air pollution prevention equipment. The object of this field survey was to understand characteristics of air pollutants concentration and emission factors and to provide preliminary data for effective processor from oak charcoal manufacturing process. As result of field survey, TSP, $PM_{10}$ and $PM_{2.5}$ concentration from charcoal kiln were 400~37,000 $mg/m^3$. These values were over the 100 $mg/m^3$ in TSP, this value was effluent quality standard of Clean Air Conservation Act. The average concentration of CO, $SO_2$ and TVOC were 2~5%. 0~110 ppm and 820~10,000 ppm respectively. The emission factors were 42.4 g-PM/kg-oak in TSP, 40.3 g-PM/kg-oak in $PM_{10}$, 38.2 g-PM/kg-oak in $PM_{2.5}$, 182.5 g-CO/kg-oak, 1.0 g-NO/kg-oak, $SO_2$ 0.2 g-$SO_2/kg$-oak and 104.4 g-TVOC/kg-oak. The part of commercial charcoal kiln had air pollution prevention equipment but it was difficult to work properly. Much wood tar excreted in exhaust emissions from oak charcoal manufacturing process. This wood tar was cause of many troubles sticking in the air pollutant prevention equipment. For handling particulate matters and gaseous air pollutants from oak charcoal manufacturing process in biomass burning, air pollutant prevention equipment design and management needs preprocessor for removal wood tar.

Investigation on a Haze Episode of Fine Particulate Matter using Semi-continuous Chemical Composition Data (준 실시간 화학적 조성자료를 이용한 미세입자 연무 에피소드 규명)

  • Park, Seung-Shik;Kim, Sun-Jung;Gong, Bu-Joo;Lee, Kwon-Ho;Cho, Seog-Yeon;Kim, Jong-Choon;Lee, Suk-Jo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.5
    • /
    • pp.642-655
    • /
    • 2013
  • In this study, semi-continuous measurements of $PM_{2.5}$ mass, organic and elemental carbon (OC and EC), black carbon (BC), and ionic species concentrations were made for the period of April 03~13, 2012, at a South Area Supersite at Gwangju. Possible sources causing the high concentrations of major chemical species in $PM_{2.5}$ observed during a haze episode were investigated. The measurement results, along with meteorological parameters, gaseous pollutants data, air mass back trajectory analyses and PSCF (potential source contribution function) results, were used to study the haze episode. Substantial enhancements of OC, EC, BC, $K^+$, $SO{_4}^{2-}$, $NO{_3}{^-}$, $NH{_4}{^+}$, and CO concentrations were closely associated with air masses coming from regions of forest fires in southeastern China, suggesting likely an impact of the forest fires. Also the PSCF maps for EC, OC, $SO{_4}^{2-}$, and $K^+$ demonstrate further that the long-range transport of smoke plumes of forest fires detected over the southeastern China could be a possible source of haze phenomena observed at the site. Another possible source leading to haze formation was likely from photochemistry of precursor gases such as volatile organic compounds, $SO_2$, and $NO_2$, resulting in accumulation of secondary organic aerosol, $SO{_4}^{2-}$ and $NO{_3}{^-}$. Throughout the episode, local wind directions were between 200 and $230^{\circ}C$, where two industrial areas are situated, with moderate wind speeds of 3~5 m/s, resulting in highly elevated concentration of $SO_2$ with a maximum of 15 ppb. The $SO{_4}^{2-}$ peak occurring in the afternoon hours coincided with maximum ambient temperature ($24^{\circ}C$) and ozone concentration (~100 ppb), and were driven by photochemistry of $SO_2$. As a result, the pattern of $SO{_4}^{2-}$ variations in relation to wind direction, $SO_2$ and $O_3$ concentrations, and the strong correlation between $SO_2$ and $SO{_4}^{2-}$ ($R^2=0.76$) suggests that in addition to the impact of smoke plumes from forest fires in the southeastern China, local $SO_2$ emissions were likely an important source of $SO{_4}^{2-}$ leading to haze formation at the site.

Research for Performance Improvement of De-NOx of Cu-SCR Catalysts (Cu-SCR 촉매의 De-NOx 성능 향상을 위한 연구)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.112-118
    • /
    • 2018
  • In order to meet the strict emission regulations for internal combustion engines based on fossil fuel, the proportion of after-treatments for vehicles and vessels is gradually increasing. Diesel engines have high power, good fuel economy, and lower $CO_2$ emissions, and their market shares are increasing in commercial vehicles and passenger cars. However, NOx is generated in the localized high-temperature combustion regions, and particulate matter is formed in the zones of diffusion combustion. LNT and urea-SCR catalysts have been developed for after-treatment of the exhaust gas to reduce NOx in diesel vehicles. This study aims to improve the NOx reduction performance of Cu SCR catalyst, which is widely used in light, medium, and heavy-duty diesel engines. The de-NOx performance of $5Cu-2ZrO_2$/93Zeolyst(Si/Al=13.7) SCR catalyst was about 5-50% higher than that of $5Cu-2ZrO_2$/93Zeolite(Si/Al=2.9) at catalyst temperatures of $300^{\circ}C$ or higher. The zeolite had lower metal dispersion than zeolyst, and the reaction rate of the catalyst decreased as the average particle size increased. The $10Cu-2ZrO_2$/88Zeolyst catalyst loaded with 10wt% Cu had the highest NOx conversion rate of 40% at $200^{\circ}C$ and about 65% at $350^{\circ}C$. The ion exchange rate of Cu ions increased with that of Al, the crystalline compound of zeolite, and the de-NOx performance was improved by 20-40% compared to other catalysts.

Spatial-temporal Assessment and Mapping of the Air Quality and Noise Pollution in a Sub-area Local Environment inside the Center of a Latin American Megacity: Universidad Nacional de Colombia - Bogotá Campus

  • Fredy Alejandro, Guevara Luna;Marco Andres, Guevara Luna;Nestor Yezid, Rojas Roa
    • Asian Journal of Atmospheric Environment
    • /
    • v.12 no.3
    • /
    • pp.232-243
    • /
    • 2018
  • The construction, development and maintenance of an economically, environmentally and socially sustainable campus involves the integration of measuring tools and technical information that invites and encourages the community to know the actual state to generate positive actions for reducing the negative impacts over the local environment. At the Universidad Nacional de Colombia - Campus $Bogot{\acute{a}}$, a public area with daily traffic of more than 25000 people, the Environmental Management Bureau has committed with the monitoring of the noise pollution and air quality, as support to the campaigns aiming to reduce the pollutant emissions associated to the student's activities and campus operation. The target of this study is based in the implementation of mobile air quality and sonometry monitoring equipment, the mapping of the actual air quality and noise pollution inside the university campus as a novel methodology for a sub-area inside a megacity. This results and mapping are proposed as planning tool for the institution administrative sections. A mobile Kunak$^{(R)}$ Air & OPC air monitoring station with the capability to measure particulate matter $PM_{10}$, $PM_{2.5}$, Ozone ($O_3$), Sulfur Oxide ($SO_2$), Carbon Monoxide (CO) and Nitrogen Oxide ($NO_2$) as well as Temperature, Relative Humidity and Latitude and Longitude coordinates for the data georeferenciation; and a sonometer Cirrus$^{(R)}$ 162B Class 2 were used to perform the measurements. The measurements took place in conditions of academic activity and without it, with the aim of identify the impacts generated by the campus operation. Using the free code geographical information software QGIS$^{(R)}$ 2.18, the maps of each variable measured were developed, and the impacts generated by the operation of the campus were identified qualitative and quantitively. For the measured variables, an increase of around 21% for the $L_{Aeq}$ noise level and around 80% to 90% for air pollution were detected during the operation period.

PM2.5 Simulations for the Seoul Metropolitan Area: (III) Application of the Modeled and Observed PM2.5 Ratio on the Contribution Estimation (수도권 초미세먼지 농도모사: (III) 관측농도 대비 모사농도 비율 적용에 따른 기여도 변화 검토)

  • Bae, Changhan;Yoo, Chul;Kim, Byeong-Uk;Kim, Hyun Cheol;Kim, Soontae
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.5
    • /
    • pp.445-457
    • /
    • 2017
  • In this study, we developed an approach to better account for uncertainties in estimated contributions from fine particulate matter ($PM_{2.5}$) modeling. Our approach computes a Concentration Correction Factor (CCF) which is a ratio of observed concentrations to baseline model concentrations. We multiply modeled direct contribution estimates with CCF to obtain revised contributions. Overall, the modeling system showed reasonably good performance, correlation coefficient R of 0.82 and normalized mean bias of 2%, although the model underestimated some PM species concentrations. We also noticed that model biases vary seasonally. We compared contribution estimates of major source sectors before and after applying CCFs. We observed that different source sectors showed variable magnitudes of sensitivities to the CCF application. For example, the total primary $PM_{2.5}$ contribution was increased $2.4{\mu}g/m^3$ or 63% after the CCF application. Out of a $2.4{\mu}g/m^3$ increment, line sources and area source made up $1.3{\mu}g/m^3$ and $0.9{\mu}g/m^3$ which is 92% of the total contribution changes. We postulated two major reasons for variations in estimated contributions after the CCF application: (1) monthly variability of unadjusted contributions due to emission source characteristics and (2) physico-chemical differences in environmental conditions that emitted precursors undergo. Since emissions-to-$PM_{2.5}$ concentration conversion rate is an important piece of information to prioritize control strategy, we examined the effects of CCF application on the estimated conversion rates. We found that the application of CCFs can alter the rank of conversion efficiencies of source sectors. Finally, we discussed caveats of our current approach such as no consideration of ion neutralization which warrants further studies.

Distribution of Persistent Organic Pollutants (POPs) in Different Sizes of Particles in the Ambient Air of the Pyeongteak Area (평택지역 대기 중 먼지 입경별 잔류성유기오염물질 분포특성 연구)

  • Kim, Dong-Gi;Woo, Jung-Sik;Kim, Yong-Jun;Jung, Hye-Eun;Park, Ju-Eun;Cho, Duck-Hee;Moon, Hee-Chun;Oh, Jo-Gyo
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.2
    • /
    • pp.192-203
    • /
    • 2020
  • Objectives: The concentration distributions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), dioxin-like polychlorinated biphenlys (dl-PCBs), and polycyclic aromatic hydrocarbons (PAHs) in fine particles were investigated to provide basic data on POP behavior and composition analysis. Methods: The concentrations of PCDD/Fs, dl-PCBs, and PAHs by particle size were evaluated for TSP, PM10, and PM2.5. Also, fine dust component analysis and factor analysis were performed to identify the source of PCDD/Fs. Results: The particle size distribution was found to account for 24.3% of >10 ㎛, 14.5% of 2.5-10 ㎛, and 61.2% of <2.5 ㎛. The average contributions of coarse particles (>2.5 ㎛) and fine particles (<2.5 ㎛) were PCDD/Fs 67%, dl-PCBs 66%, benzo (a) pyrene 83% and PAHs 84%, and the contributions of fine particles (<2.5 ㎛) were higher than coarse particles (>2.5 ㎛). However, the contributions of coarse particles increased in April to September with higher temperatures, while those of fine particles increased in February to March with lower temperatures. Conclusions: Low chlorinated (4Cl-5Cl) PCDD/Fs were more adsorbed compared to coarse particles due to the influence of pollutant migration from particulate to gas phase according to temperature rise, whereas high chlorinated (6Cl-8Cl) PCDD/Fs were more adsorbed compared to fine particles. PCDD/Fs sources were assessed to be major sources of emissions, such as incineration facilities and/or open burning.

Fingerprint of Carcinogenic Semi-Volatile Organic Compounds (SVOCs) during Bonfire Night

  • Pongpiachan, Siwatt
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.3243-3254
    • /
    • 2013
  • It is well known that increased incidences of lung, skin, and bladder cancers are associated with occupational exposure to PAHs. Animal studies show that certain PAHs also can affect the hematopoietic and immune systems and can produce reproductive, neurologic, and developmental effects. As a consequence, several studies have been attempted to investigate the fate of PAHs in atmospheric environment during the past decades. However, there is still a lack of information in regard to the atmospheric concentration of PAHs during the "Bon Fire Night". In this study, twenty-three polycyclic aromatic hydrocarbons and twenty-eight aliphatics were identified and quantified in the $PM_{10}$ and vapour range in Birmingham ($27^{th}$ November 2001-$19^{th}$ January 2004). The measured concentrations of total particulate and vapour (P+V) PAHs were consistently higher at the BROS in both winter and summer. Arithmetic mean total (P+V) PAH concentrations were $51.04{\pm}47.62$ ng $m^{-3}$ and $22.30{\pm}19.18$ ng $m^{-3}$ at the Bristol Road Observatory Site (BROS) and Elms Road Observatory Site (EROS) respectively. In addition arithmetic mean total (P+V) B[a]P concentrations at the BROS were $0.47{\pm}0.39$ ng $m^{-3}$ which exceeded the EPAQS air quality standard of 0.25 ng $m^{-3}$. On the other hand, the arithmetic mean total (P+V) aliphatics were $81.80{\pm}69.58$ ng $m^{-3}$ and $48.00{\pm}35.38$ ng $m^{-3}$ at the BROS and EROS in that order. The lowest average of CPI and $C_{max}$ measured at the BROS supports the idea of traffic emissions being a principle source of SVOCs in an urban atmosphere. The annual trend of PAHs was investigated by using an independent t-test and oneway independent ANOVA analysis. Generally, there is no evidence of a significant decline of heavier MW PAHs from the two data sets, with only Ac, Fl, Ph, An, 2-MePh, 1+9-MePh, Fluo and B[b+j+k]F showing a statistically significant decline (p<0.05). A further attempt for statistical analysis had been conducted by dividing the data set into three groups (i.e. 2000, 2001-2002 and 2003-2004). For lighter MW compounds a significant level of decline was observed by using one-way independent ANOVA analysis. Since the annual mean of $O_3$ measured in Birmingham City Centre from 2001 to 2004 increased significantly (p<0.05), it may be possible to attribute the annul reduction of more volatile PAHs to the enhanced level of annual average $O_3$. By contrast, the heavier MW PAHs measured at the BROS did not show any significant annual reduction, implying the difficulties of 5- and 6-ring PAHs to be subject to photochemical decomposition. The deviation of SVOCs profile measured at the EROS was visually confirmed during the "Bonfire Night" festival closest to the $6^{th}$ November 2003. In this study, the atmospheric PAH concentrations were generally elevated on this day with concentrations of Fl, Ac, B[a]A, B[b+j+k]F, Ind and B[g,h,i]P being particularly high.

A Numerical Study on the Optimization of Urea Solution Injection to Maximize Conversion Efficiency of NH3 (NH3 전환효율 극대화를 위한 Urea 인젝터의 분사 최적화에 관한 수치적 연구)

  • Moon, Seongjoon;Jo, Nakwon;Oh, Sedoo;Jeong, Soojin;Park, Kyoungwoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.171-178
    • /
    • 2014
  • From now on, in order to meet more stringer diesel emission standard, diesel vehicle should be equipped with emission after-treatment devices as NOx reduction catalyst and particulate filters. Urea-SCR is being developed as the most efficient method of reducing NOx emissions in the after-treatment devices of diesel engines, and recent studies have begun to mount the urea-SCR device for diesel passenger cars and light duty vehicles. That is because their operational characteristics are quite different from heavy duty vehicles, urea solution injection should be changed with other conditions. Therefore, the number and diameter of the nozzle, injection directions, mounting positions in front of the catalytic converter are important design factors. In this study, major design parameters concerning urea solution injection in front of SCR are optimized by using a CFD analysis and Taguchi method. The computational prediction of internal flow and spray characteristics in front of SCR was carried out by using STAR-CCM+7.06 code that used to evaluate $NH_3$ uniformity index($NH_3$ UI). The design parameters are optimized by using the $L_{16}$ orthogonal array and small-the-better characteristics of the Taguchi method. As a result, the optimal values are confirmed to be valid in 95% confidence and 5% significance level through analysis of variance(ANOVA). The compared maximize $NH_3$ UI and activation time($NH_3$ UI 0.82) are numerically confirmed that the optimal model provides better conversion efficiency of $NH_3$. In addition, we propose a method to minimize wall-wetting around the urea injector in order to prevent injector blocks caused by solid urea loading. Consequently, the thickness reduction of fluid film in front of mixer is numerically confirmed through the mounting mixer and correcting injection direction by using the trial and error method.

Air Pollution Trends in Japan between 1970 and 2012 and Impact of Urban Air Pollution Countermeasures

  • Wakamatsu, Shinji;Morikawa, Tazuko;Ito, Akiyoshi
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.4
    • /
    • pp.177-190
    • /
    • 2013
  • Air pollution trends in Japan between 1970 and 2012 were analyzed, and the impact of air pollution countermeasures was evaluated. Concentrations of CO decreased from 1970 to 2012, and in 2012, the Japanese environmental quality standard (EQS) for CO was satisfied. Concentrations of $SO_2$ dropped markedly in the 1970s, owing to use of desulfurization technologies and low-sulfur heavy oil. Major reductions in the sulfur content of diesel fuel in the 1990s resulted in further decreases of $SO_2$ levels. In 2012, the EQS for $SO_2$ was satisfied at most air quality monitoring stations. Concentrations of $NO_2$ decreased from 1970 to 1985, but increased from 1985 to 1995. After 1995, $NO_2$ concentrations decreased, especially after 2006. In 2012, the EQS for $NO_2$ was satisfied at most air quality monitoring stations, except those alongside roads. The annual mean for the daily maximum concentrations of photochemical oxidants (OX) increased from 1980 to 2010, but after 2006, the $98^{th}$ percentile values of the OX concentrations decreased. In 2012, the EQS for OX was not satisfied at most air quality monitoring stations. Non-methane hydrocarbon (NMHC) concentrations generally decreased from 1976 to 2012. In 2011, NMHC concentrations near roads and in the general environment were nearly the same. The concentration of suspended particulate matter (SPM) generally decreased. In 2011, the EQS for SPM was satisfied at 69.2% of ambient air monitoring stations, and 72.9% of roadside air-monitoring stations. Impacts from mineral dust from continental Asia were especially pronounced in the western part of Japan in spring, and year-round variation was large. The concentration of $PM_{2.5}$ generally decreased, but the EQS for $PM_{2.5}$ is still not satisfied. The air pollution trends were closely synchronized with promulgation of regulations designed to limit pollutant emissions. Trans-boundary OX and $PM_{2.5}$ has become a big issue which contains global warming chemical species such as ozone and black carbon (so called SLCP: Short Lived Climate Pollutants). Cobeneficial reduction approach for these pollutants will be important to improve both in regional and global atmospheric environmental conditions.

Occupational Factors Influencing the Forklift Operators' Exposure to Black Carbon (지게차 운전원의 블랙카본(black carbon, BC) 노출에 영향을 미치는 직업적 요인)

  • Lee, Hyemin;Lee, Seunghee;Ryu, Seung-Hun;Park, Jihoon;Park, Dong-Uk
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.27 no.4
    • /
    • pp.313-323
    • /
    • 2017
  • Objectives: This study aimed to assess exposure to black carbon(BC) among forklift operators and to identify environmental and occupational factors influencing their BC exposure. Methods: We studied a total of 23 forklift operators from six workplaces manufacturing paper boxes. A daily BC exposure assessment was conducted during working hours from January to April 2017. A micro-aethalometer was used to monitor daily BC exposure, and information on work activities was also obtained through a time-activity diary(TAD) and interviews. BC exposure records were classified into four categories influencing BC exposure level: working environment, workplace, forklift operation, and job characteristics. Analysis of variance(ANOVA) was used to compare average BC exposure levels among the four categories and the relationships between potential factors and BC exposure were analyzed using a multiple linear regression model. Results: The operators' daily exposure was $12.9{\mu}g/m^3$(N=9,148, $GM=7.5{\mu}g/m^3$) with a range: $0.001-811.4{\mu}g/m^3$. The operators were exposed to significantly higher levels when they operate a forklift in a room ${\leq}20,000m^3$($AM=12.3{\mu}g/m^3$), in indoor workplaces($AM=16.3{\mu}g/m^3$), when they operate a forklift manufactured before 2006 ($AM=13.2{\mu}g/m^3$), a forklift with a loading limit of four-tons($AM=27.1{\mu}g/m^3$), with a roll and bale type clamp($AM=17.1{\mu}g/m^3$), and with no particulate filter($AM=15.7{\mu}g/m^3$). Conclusions: Occupational factors including temperature, smoking, season, daytime, room volume($m^3$), location of operating, and manufacturing era and model of forklift influenced the BC exposure of forklift operators. The results of this study can be used to minimize the BC exposure of forklift operators.