• Title/Summary/Keyword: Particulate air pollution

Search Result 432, Processing Time 0.022 seconds

Respiratory protective effects of Korean Red Ginseng in a mouse model of particulate matter 4-induced airway inflammation

  • Won-Kyung Yang;Sung-Won Kim;Soo Hyun Youn;Sun Hee Hyun;Chang-Kyun Han;Yang-Chun Park;Young-Cheol Lee;Seung-Hyung Kim
    • Journal of Ginseng Research
    • /
    • v.47 no.1
    • /
    • pp.81-88
    • /
    • 2023
  • Background: Air pollution has led to an increased exposure of all living organisms to fine dust. Therefore, research efforts are being made to devise preventive and therapeutic remedies against fine dust-induced chronic diseases. Methods: Research of the respiratory protective effects of KRG extract in a particulate matter (PM; aerodynamic diameter of <4 ㎛) plus diesel exhaust particle (DEP) (PM4+D)-induced airway inflammation model. Nitric oxide production, expression of pro-inflammatory mediators and cytokines, and IRAK-1, TAK-1, and MAPK pathways were examined in PM4-stimulated MH-S cells. BALB/c mice exposed to PM4+D mixture by intranasal tracheal injection three times a day for 12 days at 3 day intervals and KRGE were administered orally for 12 days. Histological of lung and trachea, and immune cell subtype analyses were performed. Expression of pro-inflammatory mediators and cytokines in bronchoalveolar lavage fluid (BALF) and lung were measured. Immunohistofluorescence staining for IRAK-1 localization in lung were also evaluated. Results: KRGE inhibited the production of nitric oxide, the expression of pro-inflammatory mediators and cytokines, and expression and phosphorylation of all downstream factors of NF-κB, including IRAK-1 and MAPK/AP1 pathway in PM4-stimulated MH-S cells. KRGE suppressed inflammatory cell infiltration and number of immune cells, histopathologic damage, and inflammatory symptoms in the BALF and lungs induced by PM4+D; these included increased alveolar wall thickness, accumulation of collagen fibers, and TNF-α, MIP2, CXCL-1, IL-1α, and IL-17 cytokine release. Moreover, PM4 participates induce alveolar macrophage death and interleukin-1α release by associating with IRAK-1 localization was also potently inhibited by KRGE in the lungs of PM4+D-induced airway inflammation model. KRGE suppresses airway inflammatory responses, including granulocyte infiltration into the airway, by regulating the expression of chemokines and inflammatory cytokines via inhibition of IRAK-1 and MAPK pathway. Conclusion: Our results indicate the potential of KRGE to serve as an effective therapeutic agent against airway inflammation and respiratory diseases.

Evaluation of Exposure Characteristics of Fine Dusts by Subway Lines (지하철역사의 호선별로 미세먼지의 노출특성에 대한 평가)

  • Hwang, Sung Ho;Kim, Jeong Oh
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.1
    • /
    • pp.71-76
    • /
    • 2017
  • Objectives: This study aimed to assess the environmental factors that affect particulate matters (PM10) and to compare with outdoor PM10 concentrations in an underground subway stations. Methods: The PM10 level was determined from May 2013 to September 2013 in the Seoul subway stations in four lines. PM mini-vol portable sampler sampler was used to collect PM10 for 6 hrs. Arithmetic means of PM10 concentrations with standard deviation (SD) were calculated. Paired t-test was used to compare the differences between indoor PM10 and outdoor PM10 concentrations with correlation analysis which was used to identify the association between indoor PM10 concentrations and environmental factors. Results: There were no different PM10 concentrations significantly between line 1, 2, 3 and 4 in an underground subway stations. Passenger number was positively associated with PM10 concentration while construction year was negatively associated with PM10 concentrations. Indoor PM10 concentrations were significantly higher than those in outdoor PM10 concentrations. PM10 concentrations were higher in the stations which were constructed before 1990s rather than the stations constructed after 1990s. Conclusion: PM10 levels in the underground subway stations varied greatly depending on the construction year. Therefore, it might need to be more careful management to the stations which constructed in before 1990s.

Optimization of Fugitive Dust Control System for Meteorological Conditions (기상조건별 비산먼지 관리체계 최적화 연구)

  • Kim Hyun-Goo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.6
    • /
    • pp.573-583
    • /
    • 2005
  • Fugitive dust, which is emitted in the ambient air without first passing through a stack or duct designed to control flow, is frequently generated by means of wind erosion from storage yards at Pohang Steel Wokrs. The size distribution of fugitive dust is mostly in the range of coarse particulate which is deposited as soon as emitted and less harm to human health; however $20\%$ of fugitive dust contains PM 10 known as one of most harmful airborne pollutant. Consequently, effective control and reduction of fugitive dust is strongly requested by the local society, but it is not easy so far because the generation and dispersion of fugitive dust highly depends on meteorological conditions, and it being occurred for irregularity. This research presented a fugitive dust control system for each meteorological condition by providing statistical prediction data obtained from a statistical analysis on the probability of generating the threshold velocity at which the fugitive dust begins to occur, and the frequency occurring by season and by time of the wind direction that can generate atmospheric pollution when the dispersed dust spreads to adjacent residential areas. The research also built a fugitive dust detection system which monitors the weather conditions surrounding storage yards and the changes in air quality on a real-time basis and issues a warning message by identifying a situation where the fugitive dust disperses outside the site boundary line so that appropriate measures can be taken on a timely basis. Furthermore, in respect to the spraying of water to prevent the generation of fugitive dust from the storage piles at the storage yard, an advanced statistical meteorological analysis on the weather conditions in Pohang area and a case study of fugitive dust dispersion toward outside of working field during $2002\∼2003$ were carried out in order to decide an optimal water-spraying time and the number of spraying that can prevent the origin of fugitive dust emission. The results of this research are expected to create extremely significant effects in improving surrounding environment through actual reduction of the fugitive dust produced from the storage yard of Pohang Steel Works by providing a high-tech warning system capable of constantly monitoring the leakage of fugitive dust and water-spray guidance that can maximize the water-spraying effects.

The investigation of combined ventilation-biofilter systems using recycled treated wastewater on odor reduction efficiency

  • Febrisiantosa, Andi;Choi, Hong L.;Renggaman, Anriansyah;Sudiarto, Sartika I.A.;Lee, Joonhee
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.7
    • /
    • pp.1209-1216
    • /
    • 2020
  • Objective: The present study aimed to evaluate the performance of odor abatement by using two different ventilation-biofilter systems with recycled stablized swine wastewater. Methods: The performance of odor removal efficiency was evaluated using two different ventilation-biofilter-recycled wastewater arrangements. A recirculating air-flow ventilation system connected to a vertical biofilter (M1) and a plug-flow ventilation system connected to a horizontal biofilter (M2) were installed. Water dripping over the surface of the biofilter was recycled at a flow rate of 0.83 L/h in summer and 0.58 L/h in winter to reduce odorous compounds and particulate matter (PM). The experiments were performed for 64 days with M1 and M2 to investigate how these two ventilation-biofilter systems influenced the reduction of odor compounds in the model houses. Odorous compounds, NH3 and volatile organic compounds (VOCs) were analyzed, and microclimatic variables such as temperature, humidity, and PM were monitored. Results: Ammonia concentration inside M1 was about 41% higher on average than that in M2. PM and total suspended particles (TSPs) inside M1 were about 62.2% and 69.9%, respectively, higher than those in M2. TSPs in the model house were positively correlated with the concentration of NH3 and VOCs. Conclusion: M2 emitted lower concentration of odorous compounds than M1. Moreover, M2 could maintain the optimum temperature condition for a swine house during the cooler season. The plug-flow ventilation-horizontal biofilter system could be used for pig houses to minimize air pollution produced by swine farming activities and maintain optimum microclimate conditions for pigs.

Source Identification and Quantification of Coarse and Fine Particles by TTFA and PMF

  • Hwang, In-Jo;Bong, Choon-Keun;Lee, Tae-Jung;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E4
    • /
    • pp.203-213
    • /
    • 2002
  • Receptor modeling is one of statistical methods to achieve reasonable air pollution strategies. In order to maintain and manage ambient air quality, it is necessary to identify sources and to apportion its sources for ambient particulate matters. The main purpose of the study was to survey seasonal trends of inorganic elements in the coarse and fine particles. Second, this study has attempted emission sources qualitatively by a receptor method, the PMF mo-del. After that. both PMF (positive matrix factorization) model and TTFA (target transformation factor analysis) model were applied to compare and to estimate mass contribution of coarse and fine particle sources at the receptor. A total of 138 sets of samples was collected from 1989 to 1996 by a low volume cascade impactor with 9 size fraction stages at Kyung Hee University in Korea. Sixteen chemical species (Si, Ca, Fe, K, Pb, Na, Zn, Mg, Ba, Ni, V, Mn, Cr, Br, Cu. Co) were characterized by XRF. The study result showed that the weighted arithmetic mean of coarse and fine particles were 51.3 and 54.4 $\mu\textrm{g}$/㎥, respectively. Contribution of both particle fractions were esti-mated using TTFA and PMF models. The number of estimated sources was seven according to TTFA model and 8 according to PMF model. Comparison of TTFA and PMF revealed that both methodologies exhibited similar trends in their contribution pattern. However, large differences between contributions were observed in some sour-ces. The results of this study may help to suggest control strategies in local countries where known source profiles do not exist.

Seasonal Variation and Statistical Analysis of Particulate Pollutants in Urban Air (도시대기립자상물질중 오염성분의 계절적 변동 및 통계적 해석)

  • 이승일
    • Journal of environmental and Sanitary engineering
    • /
    • v.9 no.2
    • /
    • pp.8-23
    • /
    • 1994
  • During the period from Mar., 1991 to Feb., 1992 66 tSP samples were collected by Hi volume air sampler at 1 sampling site in Seoul and the amount of concentration of 21 components(SO$_{4}$$^{2-}$, NO$_{3}$$^{-}$, NH$_{4}$$^{+}$, Cl$^{-}$, Al, Ba, Ca, Cd, Cr, Cu, Fe, It Mg, Mn, Na, Ni, Pt Si, Ti, Zn, Zr ) were measured. And monthly and seasonal variation were surveyed and the principal component analysis( PCA ) were carried out with respect to these amount of pollutants, minimum of visibility and radiation on a horizontal surface. The total amount of soluble ion in water was high in order o(SO$_{4}$$^{2-}$> NO$_{3}$$^{-}$> N%'>Cl$^{-}$ and metal ion was high in order of Na> Ca>Si> Fe> Al> K> Mg> Zn> Pb> Cu>Ti> Mn > Ba> Cr> Zr> Ni> Cd. There was Seasonal variation in concentration for SO$_{4}$$^{2-}$, NH$_{4}$$^{+}$, Cl$^{-}$, Na, Al, Ca, Bt Mg, Fe and Si. It was assumed that the components of the highest concentration on April were depend on yellow sand and the frequency of wind velocity and direction. As the results of PCA, the amount of pollution components was able to characterized with two principal components(Z$_{1}$, Z$_{2}$ ). The first principal components Z$_{1}$ was considered to be a factor indicating the pollutants originated from natural generation and The second principal components Z$_{2}$ was considered to be a factor indicating the pollutants originated from human work. The monthly concentration of pollutants in ISP, minimum of visibility and radiation on a horizontal surface was possible to evaluate by the use of these two principal components Z$_{1}$ and Z$_{2}$ .

  • PDF

The Study on the Assesment Greenhouse Gases and Air Pollutants of Diesel Vehicle according to Ambient Temperature and Driving Condition (대기온도와 운전조건에 따른 디젤자동차의 차량 온실가스 및 대기오염물질 배출특성에 관한 연구)

  • Kim, Ki-Ho;Kim, Sung-Woo;Lee, Min-Ho;Oh, Sang-Gi;Lee, Seung-Ho
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.77-83
    • /
    • 2014
  • As the interest on the air pollution is gradually risen up at home and abroad, their vehicle emission regulations have been reinforcing by steps. PM regulation was also reinforced 4times for the last 13years and has been applied to SI vehicles after EURO 5. Additionally, knowing that small particles of PM can easily penetrate deep into lungs PM number was added on the regulation from EURO5+ and is applied to CI vehicles. Also, PN regulation is going to be applied to SI vehicles. But, because the regulation is appled to only a general test mode of each countries that is performed at $25{\pm}5^{\circ}C$, it is unclear whether the regulation can work on the other ambient temperature conditions or not. In this paper, to know that exhaust emission characteristics at the special conditions CI vehicles(CRDi w, w/o DPF) were tested using 5-cycle mode, NEDC mode at 5-ambient temperatures (35, 25, 0, -7 and -15) and the exhaust emission test results were discussed. The results show that the vehicle with DPF emits much low PM(and PM number) on all of the test mode. However, NOx of the other mode was emitted higher than regulation mode. Also. NOx was sharply increased according to decreasing Ambient Temperature.

Analysis of statistical models on temperature at the Suwon city in Korea (수원시 기온의 통계적 모형 연구)

  • Lee, Hoonja
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1409-1416
    • /
    • 2015
  • The change of temperature influences on the various aspect, especially human health, plant and animal's growth, economics, industry, and culture of the country. In this article, the autoregressive error (ARE) model has been considered for analyzing the monthly temperature data at the Suwon monitoring site in Korea. In the ARE model, five meteorological variables, four greenhouse gas variables and five pollution variables are used as the explanatory variables for the temperature data set. The five meteorological variables are wind speed, rainfall, radiation, amount of cloud, and relative humidity. The four greenhouse gas variables are carbon dioxide ($CO_2$), methane ($CH_4$), nitrous oxide ($N_2O$), and chlorofluorocarbon ($CFC_{11}$). And the five air pollution explanatory variables are particulate matter ($PM_{10}$), sulfur dioxide ($SO_2$), nitrogen dioxide ($NO_2$), ozone ($O_3$), and carbon monoxide (CO). Among five meteorological variables, radiation, amount of cloud, and wind speed are more influence on the temperature. The radiation influences during spring, summer and fall, whereas wind speed influences for the winter time. Also, among four greenhouse gas variables and five pollution variables, chlorofluorocarbon, methane, and ozone are more influence on the temperature. The monthly ARE model explained about 43-69% for describing the temperature.

A Study for Failure Examples of Emission Gas Recirculation and Air Control and Catalyzed Particulate Filter System in Diesel Engine Vehicle (디젤엔진 자동차의 EGR 및 공기 제어와 CPF 장치에 관련된 고장사례 고찰)

  • Lee, IL Kwon;Kook, Chang Ho;Ham, Sung Hoon;Lee, Young Suk;Youm, Kwang Wook;You, Chang Bae;Kim, Sung Mo;Lim, Ha Young;Ahn, Ho Cheol;Lee, Jeong Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.2
    • /
    • pp.78-83
    • /
    • 2018
  • The purpose of this paper is to study for failure examples of emission gas recirculation and air control and catalyzed particulate filter system in diesel engine vehicle. The first example, the researcher found the fact that the much engine oil came into the intake manifold causing diaphragm damage of EGR valve. The engine oil entered into combustion chamber of engine so that a car emit the polluted exhaust gas when driving. The second example, the researcher certified the sticking phenomenon of carbon and foreign substance with the throttle flap so that the exhaust fumes discharged exhaust port. The third example, the regeneration function don't activated to not detect the temperature of exhaust gas because of damage in the sensor. Thus, the researcher must meticulously manage his car not in order to take place the problem of environmental pollution.

Concentration and Properties of Particulate Matters (PM10 and PM2.5) in the Seoul Metropolitan (서울시 지하철 시스템 내의 입자상물질(PM10, PM2.5) 농도 특성)

  • Lee, Tae-Jung;Lim, Hyoji;Kim, Shin-Do;Park, Duck-Shin;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.2
    • /
    • pp.164-172
    • /
    • 2015
  • Seoul subway plays an important part for the public transportation service in Seoul metropolitan area. As the subway system is typically a closed environment, frequent air pollution problems occurred and passengers get malhealth impact. Especially particulate matters (PM) is well known as one of the major pollutants in subway environments. The purpose of this study was to compare the concentrations of $PM_{10}$ and $PM_{2.5}$ in the Seoul subway system and to provide fundamental data in order to management of subway system. $PM_{10}$ and $PM_{2.5}$ samples were collected in the M station platform and tunnel of Subway Line 4 in Seoul metropolitan and in an outdoor location close to it from Apr. 21, 2010~Oct. 27, 2013. The samples collected on teflon filters using $PM_{10}$ and $PM_{2.5}$ mini-volume portable samplers and PM sequential sampler. The PM contributions were $48.6{\mu}g/m^3$ (outdoor), $84.6{\mu}g/m^3$ (platform) and $204.8{\mu}g/m^3$ (tunnel) for $PM_{10}$, and $34.6{\mu}g/m^3$ (outdoor), $49.7{\mu}g/m^3$ (platform) and $83.1{\mu}g/m^3$ (tunnel) for $PM_{2.5}$. The $PM_{10}$ levels inside stations and outdoors are poorly correlated, indicating that $PM_{10}$ levels in the metro system are mainly influenced by internal sources. In this study, we compared PM concentrations before and after operation of ventilation and Electrostatic Precipitator (EP). Despite the increased PM concentration at outdoor, $PM_{10}$ concentration at platform and tunnel showed the 31.2% and 32.3% reduction efficiency after operation the reduction system. The overall results of this study suggest that the installation and operation of the ventilating system and EP should have served as one of the important components for maintaining the air quality in the subway system.