• 제목/요약/키워드: Particulate Matter (PM10)

검색결과 698건 처리시간 0.035초

미세먼지 배출원과 취약계층 분포 추정을 통한 미세먼지 저감 녹지 입지 선정 연구 - 서울시 성동구를 대상으로 - (A Study on Green Space Location Selection to Reduce Particulate Matter by Projecting Distributions of Emission Source and Vulnerable Groups - focusing on Seongdong-gu, Seoul -)

  • 신예은;박진실;김수연;이상우;안경진
    • 한국환경복원기술학회지
    • /
    • 제24권1호
    • /
    • pp.53-68
    • /
    • 2021
  • The study aims to propose a locating method of green space for reducing Particulate Matter (PM) in ambient air in conjunction with its source traces and vulnerable groups. In order to carry out the aims and purposes, a literature review was conducted to derive indicators of vulnerable area to PM. Based on the developed indicators, the vulnerable areas and green spaces creation strategies for each cluster were developed for the case of Seongdong-gu, Seoul. As a result, six indicators for vulnerability analysis were came out including the vulnerable groups (children's facilities, old people's facilities), emission sources (air pollutant emission workplaces, roads), and environmental indicators (particulate matter concentration, NDVI). According to the six selected indicators, the target area was divided into 39 hexagons and analyzed to result the most vulnerable areas to particulate matter. As a result of comprehensive vulnerability analysis, the Seongsu-dong area was found to be the most vulnerable to particulate matter, and 5 clusters were derived through k-means cluster analysis. Cluster 1 was analyzed as areas that most vulnerable to particulate matter as a result of the comprehensive analysis, therefore urgent need to create green spaces to reduce particulate matter. Cluster 2 was areas that mostly belonged to the Han River. Cluster 3 corresponds to the largest number of hexagons, and since many vulnerable groups are distributed, it was analyzed as a cluster that required the creation of a green spaces to reduce particulate matter, focusing on facilities for vulnerable groups. Three hexagons are included in cluster 4, and the cluster has many roads and lacks vegetation in common. Cluster 5 has a lot of green spaces and is generally distributed with fewer vulnerable groups and emission sources; however, it has a high level of particulate matter concentration. In a situation where various green spaces creation projects for reducing particulate are being implemented, it is necessary to consider the vulnerable groups and emission sources and to present green space creation strategies for each space characteristic in order to increase the effectiveness of such projects. Therefore, this study is regarded as meaningful in suggesting a method for selecting a green area for reducing PM.

미세먼지의 질병에 미치는 유해성 (Harmfulness of Particulate Matter in Disease Progression)

  • 최종규;최인순;조광근;이승호
    • 생명과학회지
    • /
    • 제30권2호
    • /
    • pp.191-201
    • /
    • 2020
  • 사회의 급속한 발전과 함께 수반되는 환경오염이 인간의 건강을 위협하는 커다란 위험인자로 인식되기 시작하면서 공기오염을 억제하기 위한 노력과 공기오염에 의해 유발되는 여러 질환을 억제 및 치료하기 위한 연구개발이 급속히 증가하고 있다. 인간 건강에 나쁜 영향을 주는 공기오염의 주된 원인중의 하나인 미세먼지는 (particulate matter, PM) 크기에 따라 일반미세먼지와(PM10) 초미세먼지(PM2.5)로 나누어 질 수 있으며, 호흡기, 소화기, 및 피부에 흡수 및 부착되어 이상 면역반응을 유발하여 만성호흡기질환, 당뇨병 및 면역질환등을 촉진하는 것으로 알려져 있다. 그동안 인류의 건강을 위해 미세먼지의 발생을 억제하기 위한 범 국가적 노력과 함께 미세먼지의 유해성을 증명하기 위한 많은 연구가 진행되어 왔다. 본 총설에서는 여러 인체질환에 있어서 미세먼지가 미치는 유해성을 중심으로 소개하고 미세먼지의 생물학적 위험성을 평가하는 세포 및 동물실험법에 대해 요약하였다.

토픽모델링을 이용한 국내 미세먼지 연구 분류 및 연구동향 분석 (A Study on the Research Topics and Trends in South Korea: Focusing on Particulate Matter)

  • 박혜민;김태용;권대웅;허준용;이주연;양민준
    • 대한원격탐사학회지
    • /
    • 제38권5_3호
    • /
    • pp.873-885
    • /
    • 2022
  • 전 세계적으로 미세먼지(particulate matter, PM)와 사망률 및 유병률 증가의 관련성이 보고되면서 다양한 연구가 수행되었으며, 우리나라에서는 1990년대 후반을 기점으로 PM에 대한 중요성을 인식하고, PM에 대한 다양한 연구가 수행되었다. 본 연구에서는 '미세먼지' 관련 연구들의 주제를 분류하고, 각 주제별 연구 동향을 확인하기 위해 Research Information Sharing Service (RISS)에 게재된 미세먼지 관련 2,764편의 논문을 대상으로 Latent Dirichlet Allocate (LDA) 분석을 수행하였다. 연구 결과, 총 10개의 주제로 분류하는 것이 가장 적합하였으며, 미세먼지 관련 연구주제는 '미세먼지 저감(Topic 1)', '정부 정책 및 관리(Topic 2)', '미세먼지 특성(Topic 3)', '미세먼지 모델(Topic 4)', '환경교육(Topic 5)', '바이오(Topic 6)', '교통수단(Topic 7)', '황사(Topic 8)', '실내 미세먼지 오염(Topic 9)', '인체 위해성(Topic 10)'의 주제로 분류할 수 있었다. 특히, '정부 정책 및 관리(Topic 2)', '미세먼지 모델(Topic 4)', '환경교육(Topic 5)'. '바이오(Topic 6)' 관련 연구주제들이 시간에 따라 전체 논문에 대한 비율이 증가하는 추세를 보여 성행하는 것을 확인하였다(linear slope>0). 본 연구의 결과는 미세먼지 관련 다양한 분야의 연구자들에게 새로운 문헌 고찰의 방법론을 제시하고, 미세먼지 분야의 역사와 발전에 대한 이해를 제공했음에 의의가 있다.

Assessment of the Particulate Matter Reduction Potential of Climbing Plants on Green Walls for Air Quality Management

  • Jeong, Na Ra;Kim, Jeong-Hee;Han, Seung Won;Kim, Jong-Cheol;Kim, Woo Young
    • 인간식물환경학회지
    • /
    • 제24권4호
    • /
    • pp.377-387
    • /
    • 2021
  • Background and objective: To improve air quality, particulate matter (PM) can be reduced using green infrastructure. Therefore, in this study, we aimed to determine the particulate matter reduction potential of climbing plants used for green walls, an element of vertical green infrastructure. Methods: A sealed chamber with controlled environmental variables was used to assess the PM reduction level caused by climbing plants. PM concentration in the plant chamber was measured after two and four hours of PM exposure, and the reduction potential was assessed based on the leaf area. Results: Compared to the empty chamber (Control), the PM reduction speed per hour was higher in the plant chamber, which confirmed that climbing plants contribute to the reduction of PM in the air. The PM reduction speed immediately after exposure in the plant chamber was high, but this slowed over time. Additionally, PM has been continuously reduced in plants with large leaves. As a result of calculating the particulate matter reduction level based on leaf area, it was found that there was a difference by particle size. Actinidia arguta, Parthenocissus tricuspidata, Trachelospermum asiaticum, and Euonymus fortunei var. radicans showed a high reduction effect. The trichomes on the leaf surface of Trachelospermum asiaticum were found to affect PM reduction. Conclusion: PM adsorption on the leaf surface is an important factor in reducing its concentration. It was possible to compare different plants by quantifying the amount of PM reduction during a fixed time period. These results can be used as the basic data to select the plant species suitable for urban green walls in terms of PM reduction.

부산지역 미세먼지 최근 경향 분석 - 수도권과 비교연구 (I) (Analysis of Recent Trends of Particulate Matter Observed in Busan - Comparative Study on Busan vs. Seoul Metropolitan Area (I))

  • 김종민;조유진;양금희;허국영;김철희
    • 한국환경과학회지
    • /
    • 제29권2호
    • /
    • pp.177-189
    • /
    • 2020
  • We analyzed the recent characteristics of Particulate Matter (PM) including PM10 (PM with diameter of less than 10 ㎛) and PM2.5 (PM with diameter of less than 2.5 ㎛) observed in Busan metropolitan area, and compared them with those measured in Seoul metropolitan area. This analysis includes the monthly, seasonal, and annual variations and differences, in emissions and chemical compositions observed in both Busan and Seoul areas. Synoptic meteorological conditions were investigated at the time when high PM concentrations occurred in each of the two areas. The results showed clearly decreasing trends of annual mean concentrations with strong seasonal variations: lower in summer and higher in winter in both areas. In comparison with Seoul, the seasonal variation in Busan demonstrated relatively lower, but showed greater summer fluctuations than in Seoul metropolitan area. This is implying the importance of secondary generation of PM in summer via active photochemical reaction in Busan area. In high concentration days, Busan's chemical composition of sulfate was higher than that of nitrate in summer, whereas nitrate was higher than sulfate in Seoul. The ratios of NO3- to SO42-(N/S ratio) showed lower in Busan approximately by a factor of 1/2(half of N/S ratio) in Busan compared with that in Seoul. Others such as synoptic characteristics and emission differences were also discussed in this study.

Removal Potential of Particulate Matter of 12 Woody Plant Species for Landscape Planting

  • Kwon, Kei-Jung;Urrintuya, Odsuren;Kim, Sang-Yong;Yang, Jong-Cheol;Sung, Jung-Won;Park, Bong-Ju
    • 인간식물환경학회지
    • /
    • 제23권6호
    • /
    • pp.647-654
    • /
    • 2020
  • Background and objective: Particulate matter (PM) is one of the serious environmental problems and threatens human health. Plants can clean the air by removing PM from the atmosphere. This study was carried out to investigate the PM removal efficiency of 12 species of woody plants. Methods: Actinidia arguta, Dendropanax morbiferus, Fraxinus rhynchophylla, Parthenocissus tricuspidata, Pittosporum tobira, Rhaphiolepis indica, Rhapis, Salix integra, Salix koreensis, Schisandra chinensis, Viburnum odoratissimum var. awabuki, and Vitis coignetiae were used as plant material. Six 15 cm (D) pots were placed in an acrylic chamber of 800 (D) × 800 (W) × 1000 (H) mm. The LED panel was used as a light source. The reduction of PM10, PM2.5, and PM1 for 300 minutes after the injection of PM was automatically measured. Results: The leaf area and the amount of PM in the chamber showed a negative correlation. 12 species of plants were compared by dividing the plants into 3 groups according to their characteristics: vines, trees, and shrubs and small trees. In the vine plant group, the averages of PM10, PM2.5, and PM1 were 7.917%, 8.796%, and 30.275%, respectively. In the shrubs and small trees group, the average of PM10, PM2.5, and PM1 were 10.142%, 11.133%, and 36.448%, respectively. In the trees group, the average of PM10, PM2.5, and PM1 were 11.475%, 12.892%, and 40.421%, respectively. When the initial concentration was 100%, PM10, PM2.5, and PM1 of Viburnum odoratissimum var. awabuki with the largest leaf area were 5.6%, 6.3%, and 21.0% after 5 hours, respectively, the best results among 12 species of plants. Conclusion: The vine plant group was more effective in removing PM than the other two groups. In the tree groups, the fact that the leaf development was relatively inactive at a plant height of 30 cm was considered to have an effect on the removal of particulate matter.

간호대학생의 미세먼지 관련 건강행위 영향요인 (Factors influencing Nursing Students' Health Behavior related to Particulate Matter)

  • 최은희;김진희;전재희
    • 근관절건강학회지
    • /
    • 제28권2호
    • /
    • pp.130-139
    • /
    • 2021
  • Purpose: This study was conducted to identify factors affecting health behavior related to particulate matter (PM) of among nursing college students. Methods: A cross-sectional survey design was used. Data were collected from 261 volunteering nursing college students from three universities via an online survey. The survey questions measured PM risk perception, self-care agency, and health behavior related to PM. The study was conducted from June 22 to August 21, 2020. The data were analyzed using descriptive statistics, independent t-test, ANOVA, Pearson's correlation coefficient and multiple regression analysis. Results: The factor with the greatest influence on health behavior related to PM was PM risk perception, followed by self-care agency and the frequency of going out. These variables explained about 41% of the types of health behavior related to PM. Conclusion: PM risk perception and self-nursing agency were found to be significantly correlated with health behavior related to PM. This result suggests that there is a need to develop an educational program for nursing students to improve PM risk perception and self-nursing agency.

국내 지역별 미세먼지 농도 리스크 분석 (Regional Analysis of Particulate Matter Concentration Risk in South Korea)

  • 오장욱;임태진
    • 한국안전학회지
    • /
    • 제32권5호
    • /
    • pp.157-167
    • /
    • 2017
  • Millions of People die every year from diseases caused by exposure to outdoor air pollution. Especially, one of the most severe types of air pollution is fine particulate matter (PM10, PM2.5). South Korea also has been suffered from severe PM. This paper analyzes regional risks induced by PM10 and PM2.5 that have affected domestic area of Korea during 2014~2016.3Q. We investigated daily maxima of PM10 and PM2.5 data observed on 284 stations in South Korea, and found extremely high outlier. We employed extreme value distributions to fit the PM10 and PM2.5 data, but a single distribution did not fit the data well. For theses reasons, we implemented extreme mixture models such as the generalized Pareto distribution(GPD) with the normal, the gamma, the Weibull and the log-normal, respectively. Next, we divided the whole area into 16 regions and analyzed characteristics of PM risks by developing the FN-curves. Finally, we estimated 1-month, 1-quater, half year, 1-year and 3-years period return levels, respectively. The severity rankings of PM10 and PM2.5 concentration turned out to be different from region to region. The capital area revealed the worst PM risk in all seasons. The reason for high PM risk even in the yellow dust free season (Jun. ~ Sep.) can be inferred from the concentration of factories in this area. Gwangju showed the highest return level of PM2.5, even if the return level of PM10 was relatively low. This phenomenon implies that we should investigate chemical mechanisms for making PM2.5 in the vicinity of Gwangju area. On the other hand, Gyeongbuk and Ulsan exposed relatively high PM10 risk and low PM2.5 risk. This indicates that the management policy of PM risk in the west side should be different from that in the east side. The results of this research may provide insights for managing regional risks induced by PM10 and PM2.5 in South Korea.

Distinct Oxidative Damage of Biomolecules by Arrays of Metals Mobilized from Different Types of Airborne Particulate Matters: SRM1648, Fine (PM2.5), and Coarse (PM10) Fractions

  • Park, Yong Jin;Lim, Leejin;Song, Heesang
    • Environmental Engineering Research
    • /
    • 제18권3호
    • /
    • pp.139-143
    • /
    • 2013
  • This study was performed to examine the in vitro toxicities which are incurred due to the mobilization metals from standard reference material (SRM) 1648, fine ($PM_{2.5}$), and coarse ($PM_{10}$) particulate matter collected in Seoul metropolitan area. DNA single strand breaks of approximately 74% and 62% for $PM_{2.5}$ and for $PM_{10}$, respectively, were observed in the presence of chelator (EDTA or citrate)/reductant (ascorbate), as compared to the control by 2% without chelator or reductant. $PM_{2.5}$ induced about 40% more carbonyl formation with proteins in the presence of EDTA/ascorbate than $PM_{10}$. Therefore, more damage to biomolecules was incurred upon exposure to $PM_{2.5}$ than to $PM_{10}$. The treatment of a specific chelator, desferrioxamine, to the reaction mixture containing chelator plus reductant decreased the extent of damage to DNA to the level of the control, but did not substantially decrease the extent of damage to proteins. This suggests that different arrays of metals were involved in the oxidation of DNA and proteins.

초미세 크기의 마른 안개 생성과 이를 이용한 미세먼지 제거 연구 (Experimental study on the generation of ultrafine-sized dry fog and removal of particulate matter)

  • 김기웅
    • 한국가시화정보학회지
    • /
    • 제22권1호
    • /
    • pp.34-39
    • /
    • 2024
  • With the fine particulate matter (PM) poses a serious threat to public health and the environment. The ultrafine PM in particular can cause serious problems. This study investigates the effectiveness of a submicron dry fog system in removing fine PM. Two methods are used to create fine dust particles: burning incense and utilizing an aerosol generator. Results indicate that the dry fog system effectively removes fine dust particles, with a removal efficiency of up to 81.9% for PM10 and 61.9% for PM2.5 after 30 minutes of operation. The dry fog, characterized by a mean size of approximately 1.5 ㎛, exhibits superior performance in comparison to traditional water spraying methods, attributed to reduced water consumption and increased contact probability between water droplets and dust particles. Furthermore, experiments with uniform-sized particles which sizes are 1 ㎛ and 2 ㎛ demonstrate the system's capability in removing ultrafine PM. The proposed submicron dry fog system shows promise for mitigating fine dust pollution in various industrial settings, offering advantages such as energy consumption and enhanced safety for workers and equipment.