DOI QR코드

DOI QR Code

Assessment of the Particulate Matter Reduction Potential of Climbing Plants on Green Walls for Air Quality Management

  • Jeong, Na Ra (Urban Agriculture Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Kim, Jeong-Hee (Urban Agriculture Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Han, Seung Won (Urban Agriculture Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Kim, Jong-Cheol (Urban Agriculture Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Kim, Woo Young (Urban Agriculture Division, National Institute of Horticultural & Herbal Science, RDA)
  • Received : 2021.06.01
  • Accepted : 2021.07.28
  • Published : 2021.08.31

Abstract

Background and objective: To improve air quality, particulate matter (PM) can be reduced using green infrastructure. Therefore, in this study, we aimed to determine the particulate matter reduction potential of climbing plants used for green walls, an element of vertical green infrastructure. Methods: A sealed chamber with controlled environmental variables was used to assess the PM reduction level caused by climbing plants. PM concentration in the plant chamber was measured after two and four hours of PM exposure, and the reduction potential was assessed based on the leaf area. Results: Compared to the empty chamber (Control), the PM reduction speed per hour was higher in the plant chamber, which confirmed that climbing plants contribute to the reduction of PM in the air. The PM reduction speed immediately after exposure in the plant chamber was high, but this slowed over time. Additionally, PM has been continuously reduced in plants with large leaves. As a result of calculating the particulate matter reduction level based on leaf area, it was found that there was a difference by particle size. Actinidia arguta, Parthenocissus tricuspidata, Trachelospermum asiaticum, and Euonymus fortunei var. radicans showed a high reduction effect. The trichomes on the leaf surface of Trachelospermum asiaticum were found to affect PM reduction. Conclusion: PM adsorption on the leaf surface is an important factor in reducing its concentration. It was possible to compare different plants by quantifying the amount of PM reduction during a fixed time period. These results can be used as the basic data to select the plant species suitable for urban green walls in terms of PM reduction.

Keywords

Acknowledgement

This work was carried out with the support of research project of Rural Development Administration (PJ014270022021).

References

  1. Abbruzzese, G., I. Beritognolo, R. Muleo, M. Piazzai, M. Sabatti, G.S. Mugnozza, and E. Kuzminsky. 2009. Leaf morphological plasticity and stomatal conductance in three Populus alba L. genotypes subjected to salt stress. Environ. Exp. Bot. 66(3):381-388. https://doi.org/10.1016/j.envexpbot.2009.04.008
  2. Abhijith, K.V., P. Kumar, J. Gallagher, A. McNabola, R. Baldauf, F. Pilla, B. Broderick, S. Di Sabatino, and B. Pulvirenti, 2017. Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments - A review. Atmos. Environ. 162:71-86. https://doi.org/10.1016/j.atmosenv.2017.05.014
  3. Al-Dabbous, A.N., and Kumar, P., 2014. The influence of roadside vegetation barriers on airborne nanoparticles and pedestrians exposure under varying wind conditions. Atmos. Environ. 90:113-124. https://doi.org/10.1016/j.atmosenv.2014.03.040
  4. Baldauf, R.W., V. Isakov, P. Deshmukh, A. Venkatram, B. Yang, and K. Zhang, 2016. Influence of solid noise barriers on near-road and on-road air quality. Atmos. Environ. 129:265-276. https://doi.org/10.1016/j.atmosenv.2016.01.025
  5. Bowker, G.E., R. Baldauf, V. Isakov, A. Khlystov, and W. Petersen, 2007. The effects of roadside structures on the transport and dispersion of ultrafine particles from highways. Atmos. Environ. 41(37):8128-8139. https://doi.org/10.1016/j.atmosenv.2007.06.064
  6. Cao Y., F. Li, Y. Wang, Y. Yu, Z. Wang, X. Liu, and K. Ding. 2019. Assisted deposition of PM2.5 from indoor air by ornamental potted plants. Sustain.ability. 11(9):2546-2555. https://doi.org/10.3390/su11092546
  7. Chalvatzaki, E., S. Chatoutsidou, H. Lehtomaki, S. Almeida, K. Eleftheriadis, O. Hanninen, and M. Lazaridis, 2019. Characterization of human health risks from particulate air pollution in selected european cities. Atmosphere. 10(2):96-107. https://doi.org/10.3390/atmos10020096
  8. Chen, L., C. Liu, L. Zhanz, and Z. Zhang.. 2017. Variation in tree species ability to capture and retain airborne fine particulate matter (PM2.5). Sci. Rep. 7:3206. https://doi.org/10.1038/s41598-017-03360-1
  9. Farmer, A.M. 1993. The effects of dust on vegetation-a review. Environ. Pollut. 79, 63-75, https://doi.org/10.1016/0269-7491(93)90179-r
  10. Freer-Smith P., S. Holloway, and A. Goodman. 1997. The uptake of particulates by an urban woodland: site description and particulate composition. Environ. Pollut. 95(1):27-35. PMID: 15093471. https://doi.org/10.1016/s0269-7491(96)00119-4
  11. Freer-Smith, P.H., A.A. El-Khatib, and G. Taylor. 2004. Capture of particulate pollution by trees: A comparison of species typical of semi-arid areas (Ficus nitida and Eucalyptus globulus) with European and North American species. Water Air Soil Pollut. 155:173-187. https://doi.org/10.1023/B:WATE.0000026521.99552.fd
  12. Haase, D., N. Larondelle, E. Andersson, M. Artmann, S. Borgstrom, J. Breuste, E. Gomez-Baggethun, A. Gren, Z. Hamstead, R. Hansen, N. Kabisch, P. Kremer, J. Langemeyer, E. Rall, T. McPhearson, S. Pauleit, S. Qureshi, N. Schwarz, A. Voigt, D. Wurster., and T. Elmqvist. 2014. A quantitative review of urban ecosystem service assessments: concepts, models, and implementation. Ambio. 43(4):413-433. https://doi.org/10.1007/s13280-014-0504-0.
  13. Hewitt, C., K. Ashworth, and A. MacKenzie. 2020. Using green infrastructure to improve urban air quality (GI4AQ). Ambio 49: 62-73. https://doi.org/10.1007/s13280-019-01164-3
  14. Hussain, M., P. Madl, and A. Khan. 2011. Lung deposition predictions of airborne particles and the emergence of contemporary diseases Part-I. Health 2(2):51-59.
  15. Hwang, H.J., S.J. Yook, and K.H. Ahn. 2011. Experimental investigation of submicron and ultrafine soot particle removal by tree leaves, Atmos. Environ. 45(38): 6987-6994. https://doi.org/10.1016/j.atmosenv.2011.09.019
  16. Jeong N.R., K.J. Kim, J.H. Yoon, S.W. Han, and S.J. You. 2020. Evaluation on the potential of 18 species of indoor plants to reduce particulate matter. J. People Plants Environ. 23(6):637-646. https://doi.org/10.11628/ksppe.2020.23.6.637
  17. Johnston, J., and J. Newton. 2004. Building Green A Guide to Using Plants on Roofs, Walls and Pavements. Greater London Authority. Available at: https://brightonandhove buildinggreen.files.wordpress.com/2017/07/johnstone-and-newton-building-green.pdf (accessed: 13 May 2020).
  18. Kumar, P., A. Druckman, J. Gallagher, B. Gatersleben, S. Allison, T. Eisenman, U. Hoang, S. Hama, A. Tiwari, A. Sharma, K.V. Abhijith, D. Adlakha, A. McNabola, T. Astell-Burt, X. Feng, A.C. Skeldon, S.de. Lusignan, and L. Morawska. 2019. The nexus between air pollution, green infrastructure and human health. Environ Int. 133(Part A):105181. https://doi.org/10.1016/j.envint.2019.105181
  19. Kumar, P., I. Rivas, A.P. S ingh, V.J. Ganesh, M. Ananya, and H.C. Frey. 2018. Dynamics of coarse and fine particle exposure in transport micro environments. NPJ Clim. Atmos. Sci. 1:11. https://doi.org/10.1038/s41612-018-0023-y
  20. Kwon, K., O. Urrintuya, S.Y. Kim, J.C. Yang, J.W. Sung, and B.J. Park. 2020. Removal potential of particulate matter of 12 woody plant species for landscape planting. J. People Plants Environ. 23(6):647-654. https://doi.org/10.11628/ksppe.2020.23.6.647
  21. Li, X.B., Q.C. Lu, S.J. Lu, H.D. He, Z.R. Peng, Y. Gao, and Z.Y. Wang. 2016. The impacts of roadside vegetation barriers on the dispersion of gaseous traffic pollution in urban street canyons. Urban For. Urban Green. 17(1):80-91. https://doi.org/10.1016/j.ufug.2016.03.006
  22. Liang, D., C. Ma, Y.Q. Wang, Y.J. Wang, and Z. Chen-Xi. 2016. Quantifying PM2.5 capture capability of greening trees based on leaf factors analyzing. Environ Sci Pollut Res Int. 23(21):21176-21186. https://doi.org/10.1007/s11356-016-7687-9
  23. Lin, M.Y., G. Hagler, R. Baldauf, V. Isakov, H.Y. Lin, and A. Khlystov. 2016. The effects of vegetation barriers on near-road ultrafine particle number and carbon monoxide concentrations. Sci. Total Environ. 553(15):372-379. https://doi.org/10.1016/j.scitotenv.2016.02.035
  24. Manso, M., and J. Castro-Gomes. 2015. Green wall systems: A review of their characteristics. Renew Sustain Energy Rev. 41:863-871. https://doi.org/10.1016/j.rser.2014.07.203
  25. McNabola, A. 2010. New Directions: Passive control of personal air pollution exposure from traffic emissions in urban street canyons. Atmos. Environ. 44(24):2940-2941. https://doi.org/10.1016/j.atmosenv.2010.04.005
  26. Mohan, S.M. 2016. An overview of particulate dry deposition: measuring methods, deposition velocity and controlling factors. Int. J. Environ. Sci. Technol. 13:387-402. https://doi.org/10.1007/s13762-015-0898-7
  27. Moon, S.. 2013. The development of 3-dimensional greenery system to building structures(pp.71-80). Seoul, Korea: KEITI. Retrieved from https://ecoplus.keiti.re.kr
  28. Oller, A.R., and G. Oberdorster. 2016. Incorporation of dosimetry in the derivation of reference concentrations for ambient or workplace air: A conceptual approach. J. Aerosol Sci. 99:40-45. https://doi.org/10.1016/j.jaerosci.2016.01.015
  29. Orru, H., K.L. Ebi, and B. Forsberg. 2017. The interplay of climate change and air pollution on health. Curr. Environ. Health Rep. 4(4):504-513. https://doi.org/10.1007/s40572-017-0168-6
  30. Ortolani, C., and M. Vitale. 2016. The importance of local scale for assessing, monitoring and predicting of air quality in urban areas. Sustain. Cities Soc. 26:150-160. https://doi.org/10.1016/j.scs.2016.06.001
  31. Ottele, M., H. van Bohemen, and A. Fraaij. 2010. Quantifying the deposition of particulate matter on climber vegetation on living walls. Ecol Eng. 36:154-162. https://doi.org/10.1016/j.ecoleng.2009.02.007
  32. Pugh, T., A.R. MacKenzie, J.D. Whyatt, and C.N. Hewitt. 2012. Effectiveness of green infrastructure for improvement of air quality in urban street canyons. Environ. Sci Technol. 46(14):7692-7699. https://doi.org/10.1021/es300826w
  33. Rai, A., K. Kulshreshtha, P.K. Srivastava, and C.S. Mohanty. 2010. Leaf surface structure alterations due to particulate pollution in some common plants. Environmentalist. 30:18-23, https://doi.org/10.1007/s10669-009-9238-0
  34. Ryu, J.E., J.J. Kim, H.J. Byeon, T.S. Go, and S.J. Lee. 2019. Removal of fine particulate matter (PM2.5) via atmospheric humidity caused by evapotranspiration. Environ. Pollut. 245:253-259. https://doi.org/10.1016/j.envpol.2018.11.004
  35. Saebo, A., R. Popek, B. Nawrot, H.M. Hanslin, H. Gawronska, and S.W. Gawronski. 2012. Plant species differences in particulate matter accumulation on leaf surfaces. Sci Total Environ. 427-428(15):347-354. https://doi.org/10.1016/j.scitotenv.2012.03.084
  36. Sehmel, G.A. 1980. Particle and gas dry deposition: A review. Atmos. Environ. 14(9):983-1011. https://doi.org/10.1016/0004-6981(80)90031-1
  37. Simon E., E. Baranyai, M. Braun, C. Cserhati, I. Fabian, and B. Tothmeresz. Elemental concentrations in deposited dust on leaves along an urbanization gradient. Sci. Total Environ. 2014. 490(15):514-20. https://doi.org/10.1016/j.scitotenv.2014.05.028
  38. Sternberg T., H. Viles, A. Cathersides, and M. Edwards. 2010. Dust particulate absorption by ivy (Hedera helix L) on historic walls in urban environments. Sci. Total Environ. 409(1):162-168. https://doi.org/10.1016/j.scitotenv.2010.09.022
  39. Wang, H., H. Shi, and Y. Li. 2010. Relationships between leaf surface characteristics and dust-capturing capability of urban greening plant species. J. Appl. Ecol. 21(12):3077-3082
  40. Weerakkody, U., J.W. Dover, P. Mitchell, K. Reiling. 2017. Particulate matter pollution capture by leaves of seventeen living wall species with special reference to rail-traffic at a metropolitan station. Urban For. Urban Green., 27:173-186. https://doi.org/10.1016/j.ufug.2017.07.005
  41. WHO 2013. Review of evidence on health aspects of air pollution-REVIHAAP project: technical report. Copenhagen: WHO Regional Office for Europe.
  42. World Health Organization (WHO). Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease; World Health Organization: Geneva, Switzerland, 2016; 121p, ISBN 978 92 4 151135 1.