• 제목/요약/키워드: Particulate Composites

검색결과 117건 처리시간 0.024초

Recycling of Aluminum Alloy from Al-Cu Metal Matrix Composite Reinforced with SiC Particulates

  • Sharma, Ashutosh;Ahn, Byungmin
    • 한국재료학회지
    • /
    • 제28권12호
    • /
    • pp.691-695
    • /
    • 2018
  • In this study, we investigate the recycling of aluminum-based metal matrix composites(AMCs) embedded with SiC particulates. The microstructure of the AMCs is characterized by X-ray diffraction and scanning electron microscopy. The possibility of recycling the composite scrap is attempted from the melted alloy and SiC particulates by re-melting, holding and solidification in crucibles. The recovery percentage of the matrix alloy is calculated after a number of holding times, 0, 5, 10, 15, 20, 25 and 30 minutes and for different particulate sizes and weight fractions in the Al matrix. The results show that the recovery percentage of the matrix alloy, as well as the time required for maximum recovery of the matrix, is dependent on the size and weight fraction of SiC particulates. In addition, the percentage recovery increases with particulate size but drops with the particulate fraction in the matrix. The time to reach maximum recovery falls rapidly with an increase in particulate size and fraction.

입자강화 복합재료의 쐐기분열시험 및 파괴에너지 평가 (Wedge Splitting Test and Fracture Energy on Particulate Reinforced Composites)

  • 나성현;김재훈;최훈석;박재범;김신회;정규동
    • 대한기계학회논문집A
    • /
    • 제40권3호
    • /
    • pp.253-258
    • /
    • 2016
  • 입자강화복합재료를 이용하여 쐐기분열시험으로부터 얻은 파괴에너지, 균열진전 및 CTOD 에 대한 온도의 영향이 조사되었다. 이용된 재료는 고분자바인더, 산화제 및 알루미늄입자로 이루어져 있으며, 쐐기분열시편의 시험 속도는 50 mm/min 이고, 온도 조건은 $50^{\circ}C$, 상온, $-40^{\circ}C$, $-60^{\circ}C$이었다. 분열하중-CMOD 로부터 구한 파괴에너지는 $50^{\circ}C$에서 $-40^{\circ}C$까지 온도의 감소와 함께 증가한다. 또한 $-60^{\circ}C$에서 입자강화복합재료의 강도는 유리전이온도에 의해 급격히 증가하며 취성거동을 보였다. 그리고 디지털 이미지 상관법을 이용하여 균열 선단부근에 대한 변형률장이 분석되었다.

Al/SiCp 복합재료의 마모거동에 미치는 MML의 영향 (Effect of MML on the Wear Behavior of Al/SiCp Composites)

  • 김영식;김균택
    • Tribology and Lubricants
    • /
    • 제25권1호
    • /
    • pp.66-72
    • /
    • 2009
  • Al-based composites reinforced with SiC particulate were fabricated using a thermal spray process, and dry sliding wear behavior of the composites was investigated. Pre-mixed Al and SiC powders were sprayed on an A16061 substrate by flame spraying, and dry sliding wear test were performed under various sliding speed and applied load conditions against ${Al_2}{O_3}$ ball. Wear behavior of the composites was studied by using scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). And build-up mechanism of MML on the worn surface of the composites was examined. It was revealed that these MML was formed of debris from the contact surface of the composites and effected to wear behavior of the composites protecting the contact surface of the composites.

용사법에 의한 Al/Al-SiC 복합재료의 제조 (Fabrication of Al/Al-SiC Composites by Thermal Spray Process)

  • 김균택;김영식
    • 동력기계공학회지
    • /
    • 제10권2호
    • /
    • pp.93-98
    • /
    • 2006
  • Metal matrix composites(MMCs) reinforced with ceramic particulates are receiving increasing attention because their high specific strength, low coefficient of thermal expansion and excellent wear resistance. Especially, Al-based composites(AMCs) have been widely applied for the aerospace and automotive industries. Such composites are mainly fabricated by the cast, powder metallurgy and infiltration process. In this study, SiC particulate reinforced Al-based composites were fabricated by thermal spray process and their wear behavior were investigated. Composites with different spray parameter were fabricated by using flame spray apparatus. Microstructure and wear behavior of the composites were observed by scanning electron microscope(SEM) and electron probe micro-analysis(EPMA).

  • PDF

반용융 성형가공한 SiCp/AZ91HP Mg복합재료의 피로 및 내마모 특성 (Fatigue and Wear Properties of Semi-Liquid Formed SiCp/AZ91HP Mg Composites)

  • 하홍수;김명균;안선규;임병수;김영직
    • 한국주조공학회지
    • /
    • 제17권5호
    • /
    • pp.472-479
    • /
    • 1997
  • The effect of size and mass fraction of SiC particulate on the fatigue and wear have been investigated for semi-liquid formed SiCp/AZ91HP Mg composites. In the study, different particulate sizes of 7, 20, $50 {\mu}m$ were prepared with various mass fraction for sample preparation. By tension-tension fatigue tests, whose procedures are standardized in ASTM standard 647E-93, the da/dN vs. ${\Delta}K$ curves were obtained. Also, the crack propagation paths were observed by optical microscope. As a result of wear test, specific wear loss is decreased with increasing mass fraction and particulate size. Specific wear loss of 30 mass% $50 {\mu}m$ SiC reinforced Mg composite is compared to SKD11.

  • PDF

Properties of Hot Pressed Alumina-Titanium Diboride Particulate Composites

  • Park, Dong-Soo;Han, Byung-Dong
    • The Korean Journal of Ceramics
    • /
    • 제4권3호
    • /
    • pp.227-230
    • /
    • 1998
  • Alumina($Al_2O_3$)-Titanium Diboride($TiB_2) particulate composites were fabricated by hot pressing of the powder mixture that was prepared from Self-propagating High Temperature Synthesis (SHS) product and commercial powders. Their propeties were examined in order to find feasibility of using SHS for making the high performance ceramic composite. $TiB_2 particles obtained by grinding the SHS product were finer than the commercial powders. Hot pressed sample containing the SHS products exhibited higher strength than the one prepared from the commercial powders.

  • PDF

EFFECTS OF PARTICLE RESONANCE ON DISPERSION OF ELASTIC WAVES IN PARTICULATE COMPOSITES

  • Kim, J.Y.;Ih, J.G.;Lee, B.H.
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1994년도 FIFTH WESTERN PACIFIC REGIONAL ACOUSTICS CONFERENCE SEOUL KOREA
    • /
    • pp.734-739
    • /
    • 1994
  • Elastic wave propagation in discrete random medium is studied to evaluate the effects of particle resonance on dispersion and attenuation of composite materials containing spherical inclusions. The frequency-dependent wave speed and attenuation coefficient can be obtained from proposed self-consistent method. It can be observed that the abrupt increase of effective wave speed and the concurrent peak of attenuation at low frequency is due to the lowest resonance of particles, whereas those in high frequency region are due to higher ones. The lowest resonance is mainly caused by the density mismatch and higher resonances by the stiffness mismatch between matrix and particles. The dispersion and attenuation of elastic waves in particulate composites are affected by the lowest resonance much than by higher ones.

  • PDF

Effect of Powder Size on Infiltration Height in Producing MgO Reinforced Al Matrix Composite by Vacuum Infiltration Method

  • Calin, Recep;Citak, Ramazan
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1271-1272
    • /
    • 2006
  • The vacuum infiltration method is one of the composite producing methods. There are several parameters in composite production by vacuum infiltration. One of them is particle size of reinforcement in particulate reinforced composites. In this study, MgO powder and Al were used as reinforcement and matrix respectively. MgO powders with different size and amount to give same height were filled in quartz tubes and liquid metal was vacuum infiltrated into the MgO powder under same vacuum condition and for same time. Infiltration height was measured and microstructure and fracture behavior of composite were investigated. It has been found that infiltration height and fracture strength were increased with particulate reinforcement sizes. It has also been determined that molten metal temperature facilitates infiltration.

  • PDF

Al-10wt% TiCp복합재료의 정적 크립특성 (Static Creep Characteristics of AI-10wt% TiCp Composites)

  • 임종국;박종건
    • 열처리공학회지
    • /
    • 제6권3호
    • /
    • pp.159-165
    • /
    • 1993
  • Creep tests of the TiC particulate reinforced Al composite have been conducted in the temperature ranges from 200 to $500^{\circ}C$. The steady-state cree rate of the composite depended strongly on the temperature and ap' plied stress. The stress exponent for the steady state creep rate of the composites was approximately 17.5 and the activation anergy was calculated to be 390KJ/mol. The steady-state creep equation could be written as $\acute{\varepsilon}_{ss}$ $$(s^{-1})=1.5{\times}10^{-9}\;{\sigma}^{17.5}\exp(-390000/RT)$$. Fracture surface examination showed that the fracture mode of the particulate reinforced composite was ductile by plastic tearing of the aluminum matrix and TiC particle interfaces were offered as sites for crack.

  • PDF

A micromechanics-based time-domain viscoelastic constitutive model for particulate composites: Theory and experimental validation

  • You, Hangil;Lim, Hyoung Jun;Yun, Gun Jin
    • Advances in aircraft and spacecraft science
    • /
    • 제9권3호
    • /
    • pp.217-242
    • /
    • 2022
  • This paper proposes a novel time-domain homogenization model combining the viscoelastic constitutive law with Eshelby's inclusion theory-based micromechanics model to predict the mechanical behavior of the particle reinforced composite material. The proposed model is intuitive and straightforward capable of predicting composites' viscoelastic behavior in the time domain. The isotropization technique for non-uniform stress-strain fields and incremental Mori-Tanaka schemes for high volume fraction are adopted in this study. Effects of the imperfectly bonded interphase layer on the viscoelastic behavior on the dynamic mechanical behavior are also investigated. The proposed model is verified by the direct numerical simulation and DMA (dynamic mechanical analysis) experimental results. The proposed model is useful for multiscale analysis of viscoelastic composite materials, and it can also be extended to predict the nonlinear viscoelastic response of composite materials.