• Title/Summary/Keyword: Particulate matter

Search Result 1,470, Processing Time 0.025 seconds

Measuring Changes in Fine Particulate Matter in Green Transportation Areas Due to Vehicle Operation Restrictions (차량 등급 운행 제한에 따른 녹색교통지역의 초미세먼지 변화 측정)

  • Joong-An Kim;Jong-Pil Yu;Young-Eun Jo
    • The Journal of Bigdata
    • /
    • v.9 no.1
    • /
    • pp.127-140
    • /
    • 2024
  • This study investigated the impact of vehicle grade operation restrictions in green transportation areas on the concentration of fine particulate matter (PM2.5) year by year. The results indicate that these restrictions positively affected the reduction of PM2.5 levels. The green transportation area policy reduced vehicle emissions and encouraged the use of public and eco-friendly transportation, thereby improving air quality. A notable outcome was the decrease in PM2.5 concentrations, which is expected to positively impact the health of residents in urban areas. The study considered various factors and variables related to the effectiveness of the vehicle grade operation restrictions policy. It was determined that there is a need to discuss the implementation methods of the policy, regional characteristics, and other environmental factors. These findings provide important implications for managing fine particulate matter and urban planning, suggesting that reference materials and ongoing research will be necessary considering future urban sustainability.

Influence of Drying Temperature and Duration on the Quantification of Particulate Organic Matter

  • Lee, Jin-Ho;Doolittle, James J.;Lee, Do-Kyoung;Malo, Douglas D.
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.4
    • /
    • pp.289-296
    • /
    • 2006
  • Various drying conditions, temperatures (40 to $80^{\circ}C$) and durations (overnight to 72 hrs), for the particulate organic matter (POM) fraction after wet-sieving size fractionation have been applied for determination of POM contents in the weight loss-on-ignition method. In this study, we investigated the optimum drying condition for POM fraction in quantification of POM and/or mineral-associated organic matter (MOM; usually indirectly estimated). The influence of the drying conditions on quantifying POM was dependent upon soil properties, especially the amount of soil organic components. In relatively high organic soils (total carbon > 40 g/kg in this study), the POM values were significantly higher (overestimated) with drying at $55^{\circ}C$ than those values at $105^{\circ}C$, which were, for example, 173.2 and 137.3 mg/kg, respectively, in a soil studied. However, drying at $55^{\circ}C$ for longer than 48 hrs of periods produced consistent POM values even though the values were much higher than those at $105^{\circ}C$. Thus, indirect estimates of MOM (MOM = SOM-POM) also tended to be significantly impacted by the dry conditions. Therefore, we suggest POM fractions should be dried at $105^{\circ}C$ for 24 hrs as determining POM and MOM contents. If the POM traction is needed to be dried at a lower temperature (e.g. $55^{\circ}C$) with a specific reason, at least 48 hrs of drying period is necessary to obtain consistent POM values, and a moisture correction factor should be determined to adjust the values back to a $105^{\circ}C$ weight basis.

Performance of Removal Efficiency for Mercury Compounds using Hybrid Filter System in a Coal-fired Power Plant (석탄화력발전시설에서의 하이브리드 집진기 적용 시 수은화합물 제어성능 평가)

  • Sung, Jin-Ho;Jang, Ha-Na;Back, Seung-Ki;Jung, Bup-Muk;Seo, Yong-Chil;Kang, Yeon-Suk;Lee, Chul-Kyu
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.3
    • /
    • pp.261-269
    • /
    • 2014
  • This study focused on the performance of the newly developed hybrid filter system to capture fine particulate matter and mercury compounds in a coal-fired power plant. The hybrid filter system combining bag-filter and electrostatic precipitator had been developed to remove fine particulate matter. However, it would have a good performance to control mercury compounds as well. In Hybrid filter capture system, the total removal efficiency of total mercury compounds consisting of particulate mercury ($Hg_p$), oxidized mercury ($Hg^{2+}$), and elemental mercury ($Hg^0$) was 66.2%. The speciation of mercury compounds at inlet and outlet of Hybrid filter capture system were 1.3% and 0% of $Hg_p$, 85.2% and 68.1% of $Hg^0$, and 13.5% and 31.9% of $Hg^{2+}$, respectively. In hybrid filter capture system injected with 100% of flue-gas, the removal efficiency of total mercury was calculated to increase to 93.5%.

Analysis of the Seasonal Concentration Differences of Particulate Matter According to Land Cover of Seoul - Focusing on Forest and Urbanized Area - (서울시 토지피복에 따른 계절별 미세먼지 농도 차이 분석 - 산림과 시가화지역을 중심으로 -)

  • Choi, Tae-Young;Moon, Ho-Gyeong;Kang, Da-In;Cha, Jae-Gyu
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.6
    • /
    • pp.635-646
    • /
    • 2018
  • This study sought to identify the characteristics of seasonal concentration differences of particulate matter influenced by land cover types associated with particulate matter emission and reductions, namely forest and urbanized regions. PM10 and PM2.5 was measured with quantitative concentration in 2016 on 23 urban air monitoring stations in Seoul, classified the stations into 3 groups based on the ratio of urbanized and forest land covers within a range of 3km around station, and analysed the differences in particulate matter concentration by season. The center values for the urbanized and forest land covers by group were 53.4% and 34.6% in Group A, 61.8% and 16.5% in Group B, and 76.3% and 6.7% in Group C. The group-specific concentration of PM10 and PM2.5 by season indicated that the concentration of Group A, with high ratio of forests, was the lowest in all seasons, and the concentration of Group C, with high ratio of urbanized regions, had the highest concentration from spring to autumn. These inter-group differences were statistically significant. The concentration of Group C was lower than Group B in the winter; however, the differences between Groups B to C in the winter were not statistically significant. Group A concentration compared to the high-concentration groups by season was lower by 8.5%, 11.2%, 8.0%, 6.8% for PM10 in the order of spring, summer, autumn and winter, and 3.5%, 10.0%, 4.1% and 3.3% for PM2.5. The inter-group concentration differences for both PM10 and PM2.5 were the highest in the summer and grew smaller in the winter, this was thought to be because the forests' ability to reduce particulate matter emissions was the most pronounced during the summer and the least pronounced during the winter. The influence of urbanized areas on particulate matter concentration was lower compared to the influence of forests. This study provided evidence that the particulate matter concentration was lower for regions with higher ratios of forests, and subsequent studies are required to identify the role of green space to manage particulate matter concentration in cities.

Distribution of Aliphatic Hydrocarbons in Gyeongan River (경안천에서 사슬형 탄화수소 화합물의 농도와 분포)

  • Yi, Dong-Seok;Park, Kap-Song
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.5
    • /
    • pp.442-447
    • /
    • 2005
  • Concentrations of aliphatic hydrocarbons in water, particulate matter, and sediment phase were measured at five stations in Gyeongan River. Aliphatic hydrocarbons from $n-C_{10}$ to $n-C_{17}$ were detected in the water phase and they might be originated from not only biogenic hydrocarbons also petroleum hydrocarbon. $n-C_{17}$ aliphatic hydrocarbon and fatty acids were detected in the particulate matter phase. They might be originated from biological sources such as phytoplankton. Short alkane chains from $n-C_{10}$ to $n-C_{13}$ were detected in the sediment phase. They might be originated from sedimentation of biological hydrocarbons decomposed by bacteria or adsorption of petroleum hydrocarbon from the water phase.

Distribution of Suspended Particulate Matters in the East China Sea, Southern Yellow Sea and South Sea of Korea During the Winter Season

  • Choi, Jin-Yong;Kim, Seok-Yun;Kang, Hyo-Jin
    • Journal of the korean society of oceanography
    • /
    • v.39 no.4
    • /
    • pp.212-221
    • /
    • 2004
  • Concentrations of suspended particulate matters (SPM) and their distribution patterns were monitored three times in the East China Sea during the winter season in 1998 and 1999. SPM concentrations showed significant temporal variations controlled by the atmospheric conditions and sea states. In coastal area, SPM values were about 10-20 mg/l in fair weather conditions, but exceeded 100mg/l during the storm periods. Turbid waters were distributed widespread in the continental shelf of the East China Sea and the coastal area of the Korean Peninsula, and these two areas were connected along a NE-SW direction. The distribution patterns of turbid waters were interpreted as representing the transport behavior of suspended matter. Although the primary source of inner shelf mud deposits of Korea seems to be the Korean Peninsula, contribution from the East China Sea to the coastal area of Korea increases especially during the winter season.

Physicochemical Characteristics of Particulate Matter Emitted from Aluminum Casting Process (알루미늄 주조과정에서 배출되는 입자상물질의 물리·화학적 특성)

  • Jeong-Min Suh;Jeong-Ho Park
    • Journal of Environmental Science International
    • /
    • v.33 no.5
    • /
    • pp.297-304
    • /
    • 2024
  • PM (Particulate Matters) was collected from a bag filter dust collector at an aluminum foundries, and its physicochemical properties were investigated using particle size analyzer and scanning electron microscopy with energy dispersive X-ray spectrometer (SEM/EDS). The median volume diameter of the particles passing through the pretreatment dust collector of the cyclone was approximately 10 ㎛. The cyclone pretreatment dust collector was shown to significantly reduce the throughput of large particles with a particle size of 100 ㎛ or more. The chemical composition of the particles showed a high Al content, and trace amounts of Mg, Si, and Zn were detected.

Identification of the Food Sources-Metabolism of the Pacific Oyster Crassostrea gigas using Carbon and Nitrogen Stable Isotopic Ratios

  • Yang, Jin-Yong;Shin, Kyung-Hoon
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.3
    • /
    • pp.279-284
    • /
    • 2009
  • In order to understand food sources-metabolism for the pacific oyster (Crassostrea gigas), the stable isotope ratios of carbon (${\delta}^{13}C$) and nitrogen (${\delta}^{15}N$) of its gut, gill, and muscle as well as potential food sources (particulate organic matter, sedimentary organic matter, benthic microalgae, seagrass detritus) were determined in Dongdae Bay. Average ${\delta}^{13}C$ and ${\delta}^{15}N$ values reflect that oysters primarily fed on sedimentary organic matter as opposed to suspended organic matter during summer and winter seasons. However, the relatively enriched $^{15}N$ values of particulate organic matter (>$250{\mu}m$) and sedimentary organic matter in the summer may be due to the photosynthetic incorporation of $^{15}N$-enriched nitrogen (DIN) or the spawning events of bivalves. Specific oyster tissues (gut, gill, and muscle) revealed different metabolic pathways, which were determined through analysis of ${\delta}^{13}C$ and ${\delta}^{15}N$ in each organ. The present results suggest the determination of carbon and nitrogen stable isotopes to be a useful approach in ecological research related to the food sources- metabolism of Crassostrea gigas.

A Review on the Characteristics of Air Pollutants Emitted from Passenger Cars in Korea

  • Jung, Sungwoon;Kim, Jeongsoo
    • Journal of ILASS-Korea
    • /
    • v.21 no.4
    • /
    • pp.223-236
    • /
    • 2016
  • On-road source emissions are major air pollutants and have been associated with serious health effects in Seoul metropolis. Thus, it is of fundamental importance to have an accurate assessment of vehicle emissions in order to implement an effective air quality management policy. As a result, there is a need to overview vehicle emission characteristics of air pollutants. This article discusses vehicle exhaust sampling and chemical analysis, emission characteristics of air pollutants, and emission regulations from passenger cars. The vehicle exhaust sampling and chemical analysis methods were described in particulate matter and gaseous compounds. In this article, chassis dynamometer, measurement instrumentation for nano-particulate matter and carbon compounds analysis device were described. For the gasoline and diesel vehicles, the effective parameters of emissions were average vehicle speed, vehicle mileage and model year. The particle number emissions for diesel nano-particles were sensitive to the sampling conditions. Also, the particle number emissions with a diesel particle filter (DPF) largely reduced rather than those without it. This article also describes different emission characteristics of air pollutants according to biodiesel or bioethanol mixing ratio. The Korean emission standards for passenger cars were compared with those of the US and EU. Finally, the objective is to give an overview of relevant background information on emission characteristics of air pollutants from passenger cars in Korea.

Pool Combustion of Iso-Propanol Fuel including IPA and PCBs in different Type Vessels

  • An Suk-Heon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.102-108
    • /
    • 2006
  • On the refutation demanded for a control of various toxic substances. PCBs(poly chlorinated biphenyl) has a fatal poisonous matter in the ecosystem and the environmental pollution as it Is a kind of stable chemical substance. Especially, the gross Product of PCBs is estimated at about one million tonnage all over the world. However it is kept on storing in untreated state, then has a deterioration by the Prolonged storage and a risk of overflowing. Therefore, this research examined the fundamental characteristics of combustion and emission for the target of using the IPA (iso-propyl alcohol) solution as a part of PCBs control. IPA was filled to three kinds of Vessel, i.e. Vessel I, II, and III, and then was investigated as follows combustion shape, flame temperature. mass burning velocity, and PM(Particulate matter). A radial thermometer and a C-A thermocouple measured the flame temperature, and the optical extinction method by using He-Ne laser and the filter weight method used in the PM measurement. As a result, with an increasing of L/S ratio, the flame length become shorter and the burning velocity is more rapid, but the particulate matters is higher. It is supposed that the air flow rate is high on Vessel. and then the combustion is Promoted in the surface area of the upstream zone. The future works plan to investigate the characteristics with an using of the mixing of IPA and PCBs