• Title/Summary/Keyword: Particular Solution

Search Result 1,088, Processing Time 0.028 seconds

Design and Synthesis of Multi Functional Noble Metal Based Ternary Nitride Thin Film Resistors

  • Kwack, Won-Sub;Choi, Hyun-Jin;Lee, Woo-Jae;Jang, Seung-Il;Kwon, Se-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.93-93
    • /
    • 2013
  • In recent years, multifunctional ternary nitride thin films have received extenstive attention due to its versatility in many applications. In particular, noble metal based ternary nitride thin films showed a promising properties in the application of Multifunctional heating resistor films because its good electrical properties and excellent resistance against oxidation and corrosion. In this study, we prepared multifunctional noble metal based ternary nitride thin films by atomic layer deposition (ALD) and plasma-enhanced ALD (PEALD) method. ALD and PEALD techniques were used due to their inherent merits such as a precise composition control and large area uniformity, which is very attractive for preparing multicomponent thin films on large area substrate. Here, we will demonstrate the design concept of multifunctional noble metal based ternary thin films. And, the relationship between microstructural evolution and electrical resistivity in noble metal based ternary thin films will be systemically presented. The useful properties of noble metal based ternary thin films including anti-corrosion and anti-oxidation will be discussed in terms of hybrid functionality.

  • PDF

Synthesis of F-free Y & Cu precursor solution and optimization of annealing process (Sm 첨가 F-free Y & Cu 전구용액의 합성 및 열처리 공정의 최적화)

  • Kim, Young-Kuk;Yoo, Jai-Moo;Chung, Kook-Chae;Ko, Jae-Woong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.1
    • /
    • pp.1-4
    • /
    • 2007
  • The total Fluorine content in the precursor solution for MOD processing of YBCO coated conductors can be significantly reduced by synthesizing precursor solution with F-free Y & Cu precursor and Barium trifluoroacetate(TFA). It was shown that crack-free and uniform precursor films were formed after calcinations in humidified oxygen atmosphere. Less than 2 hours are required to finish the calcinations process and XRD measurement shows that $BaF_2,\;CuO,\;Y_2O_3$ are major constituent of calcined precursor films. Film thickness after calcinations was improved to be 2.8um by applying slot-die coating method. In particular, addition of Samarium shows critical current of $I_c=273A/cm-w(J_c=3.8MA/cm^2)$. It is shown that uniform and fast processing route to YBCO coated conductor with high Ic can be provided by employing F-free Y & Cu precursor solution in MOD process.

Representation of fundamental solution and vibration of waves in photothermoelastic under MGTE model

  • Rajneesh Kumar;Nidhi Sharma;Supriya Chopra;Anil K. Vashishth
    • Ocean Systems Engineering
    • /
    • v.13 no.2
    • /
    • pp.123-146
    • /
    • 2023
  • In this paper, Moore-Gibson-Thompson theory of thermoelasticity is considered to investigate the fundamental solution and vibration of plane wave in an isotropic photothermoelastic solid. The governing equations are made dimensionless for further investigation. The dimensionless equations are expressed in terms of elementary functions by assuming time harmonic variation of the field variables (displacement, temperature distribution and carrier density distribution). Fundamental solutions are constructed for the system of equations for steady oscillation. Also some preliminary properties of the solution are explored. In the second part, the vibration of plane waves are examined by expressing the governing equation for two dimensional case. It is found that for the non-trivial solution of the equation yield that there exist three longitudinal waves which advance with the distinct speed, and one transverse wave which is free from thermal and carrier density response. The impact of various models (i)Moore-Gibson-Thomson thermoelastic (MGTE)(2019), (ii) Lord and Shulman's (LS)(1967) , (iii) Green and Naghdi type-II(GN-II)(1993) and (iv) Green and Naghdi type-III(GN-III)(1992) on the attributes of waves i.e., phase velocity, attenuation coefficient, specific loss and penetration depth are elaborated by plotting various figures of physical quantities. Various particular cases of interest are also deduced from the present investigations. The results obtained can be used to delineate various semiconductor elements during the coupled thermal, plasma and elastic wave and also find the application in the material and engineering sciences.

Coloring Analysis of Digital Textile Printing According to the Type of Fiber (섬유 종류에 따른 디지털 텍스타일 프린팅의 발색성 비교 분석)

  • Lee, Youn-Soon;Eum, Ji-Eun
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.12 no.2
    • /
    • pp.67-73
    • /
    • 2010
  • Whole process of textile printing is made by computer and it remarkably improves environment problem. This digital textile printing is becoming next step environment friendly textile printing method. But, still now range of textile possible for digital textile printing is limited, and also color analysis according to fiber types is not completed. The ink printed on the fabrics through DTP printer can be absorbed and fixed into textile without any blots by pre-treatment using suitable media solution for fabrics types. The chemical formulation of media solution used in the pre-treatment process varies according to the types of textiles and inks for DTP products. First, I studied reference books or articles about color analysis of digital textile printing. Second, I recorded pre-process, printing, post-process and coloring of silk, wool, nylon at same condition. After that, I analyzed $L^*\;a^*\;b^*$, Total K/S, ${\Delta}E$ and studied color intensity and coloring. According to this study, I suggested particular textile special for coloring and manual for affective coloring control. It showed that the performance of the digital printing on the Silk, Wool and Nylon blend fabrics treated by the media solution developed in this study was better than the one treated by the previous media solution for each single inks.

  • PDF

A Numerical Study on Nonlinear Dynamic Behavior of Diffusive-Thermal Instability in Diluted CH4/O2 Conterflow Diffusion Flames (희석된 메탄/산소 대향류 확산화염에서 확산-열 불안정으로 인한 화염의 비선형 동적 거동에 관한 수치해석)

  • Sohn, Chae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.6
    • /
    • pp.688-696
    • /
    • 2004
  • Nonlinear dynamic behavior of diffusive-thermal instability in diluted CH$_4$/O$_2$ diffusion flames is numerically investigated by adopting detailed chemistry and transport. Counterflow diffusion flame is adopted as a model flamelet. Particular attention is focused on the pulsating-instability regime, which arises for Lewis numbers greater than unity, and the instability occurs at high strain rate near extinction condition in this flame configuration. Once a steady flame structure is obtained for a prescribed value of initial strain rate, transient solution of the flame is calculated after a finite amount of strain-rate perturbation is imposed on the steady flame. Transient evolution of the flame depends on the initial strain rate and the amount of perturbed strain rate. Basically, the dynamic behaviors can be classified into two types, namely non-oscillatory decaying solution and diverging solution leading to extinction. The peculiar oscillatory solution, which has been found in the previous study adopting one-step chemistry and constant Lewis numbers, is net observed in this study, which is attributed to both convective flow and preferential diffusion effects.

Numerical Study on Dynamic Behavior of Diffusive-Thermal Instability in $CH_4/O_2$ Conterflow Diffusion Flames (메탄/산소 대향류 확산화염에서 확산-열 불안정으로 인한 화염의 거동에 관한 수치적 연구)

  • Sohn, Chae-Hoon
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.95-101
    • /
    • 2004
  • Dynamic behavior of diffusive-thermal instability in diluted $CH_4/O_2$ diffusion flames is numerically investigated by adopting detailed chemistry and transport. Counterflow diffusion flame is adopted as a model flamelet. Particular attention is focused on the pulsating-instability regime, which arises for Lewis numbers greater than unity, and the instability occurs at high strain rate near extinction condition in this flame configuration. Once a steady flame structure is obtained for a prescribed value of initial strain rate. transient solution of the flame is calculated after a finite amount of strain-rate perturbation is imposed Oil the steady flame. Transient evolution of the flame depends on the initial strain rate and the amount of perturbed strain rate. Basically, the dynamic behaviors can be classified into two types, namely non-oscillatory decaying solution and diverging solution leading to extinction. The peculiar oscillatory solution. which has been found in the previous study adopting one-step chemistry and constant Lewis numbers, is not observed in this study, which is attributed to both convective flow and preferential diffusion effects.

  • PDF

An Explicit Solution of EM Algorithm in Image Deblurring: Image Restoration without EM iterations (영상흐림보정에서 EM 알고리즘의 일반해: 반복과정을 사용하지 않는 영상복원)

  • Kim, Seung-Gu
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.3
    • /
    • pp.409-419
    • /
    • 2009
  • In this article, an explicit solution of the EM algorithm for the image deburring is presented. To obtain the restore image from the strictly iterative EM algorithm is quite time-consumed and impractical in particular when the underlying observed image is not small and the number of iterations required to converge is large. The explicit solution provides a quite reasonable restore image although it exploits the approximation in the outside of the valid area of image, and also allows to obtain the effective EM solutions without iteration process in real-time in practice by using the discrete finite Fourier transformation.

Optical Properties Control by Surface Treatment on Display Cover Glass (디스플레이 커버 글라스의 표면 처리에 의한 광학요소 제어)

  • Kim, Sung Soo;Hwang, Jai Suk;Jeon, Bup Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.9
    • /
    • pp.607-614
    • /
    • 2015
  • To provide the clear images from the direct light on electrical board and display devices, anti glare treatment of display cover glass is needed. In this study, the effects of surface treatment temperature, concentration, and etching solution coating thickness of the gel phase on optical elements control such as gloss, haze of reflected light and transmittance, were investigated. Cover glasses were treated at different coating thickness and additive concentration. The optical properties were examined using spectrophotometer, gloss and haze meter. The surface morphology and roughness were measured by the optical microscope and Ra measuring instrument. The etching rate and surface morphologies were dramatically affected by the concentration of acid additive in the viscous gel because of re-crystallization of components in the etching solution, hydrogel formation and coagulant after coating on glass substrate. In our experimental range, cover glass which is surface-treated with various optical properties as well as the morphology uniformity was obtained; in particular, optical properties could be controlled by etching solution coating thickness of the gel phase and the concentration of additive. The gloss was depended on the surface roughness and it showed the linear relationship between optical transmittance and haze of reflected light, respectively.

An Experimental Study on Corrosion Fatigue Strength of TMCP Steel in Consideration of NaCl Salinity (염분농도변화에 따른 TMCP강의 부식피로강도에 관한 실험적 연구)

  • 강성원;김철현;이해우
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.3
    • /
    • pp.54-60
    • /
    • 2003
  • Fatigue strength of offshore structures or ship structures is significantly decreased due to corrosive environment condition such as sea water and/or coal, crude oil of cargoes, compared to that of on shore structures. In corrosive environment, fatigue strength of structures also depends on characteristics of weld material heat affected zone(HAZ). In this research work, rotary bending fatigue tests of parent material and HAZ of TMCP steel were performed in order to investigate the initiation and propagation of cracks both in air and in NaCl solution. Comparison of fatigue strength In relation with the salinity of NaCl were carried out as well. According to the test results weld material or HAZ of TMCP steel showed higher fatigue strength than that of the parent material. The fatigue strength of TMCP steel decreases drastically in NaCl solution compared to that of in air environment. In particular, more reduced fatigue strength is observed in 1% NaCl solution than in 3% NaCl solution.

Instability of (Heterogeneous) Euler beam: Deterministic vs. stochastic reduced model approach

  • Ibrahimbegovic, Adnan;Mejia-Nava, Rosa Adela;Hajdo, Emina;Limnios, Nikolaos
    • Coupled systems mechanics
    • /
    • v.11 no.2
    • /
    • pp.167-198
    • /
    • 2022
  • In this paper we deal with classical instability problems of heterogeneous Euler beam under conservative loading. It is chosen as the model problem to systematically present several possible solution methods from simplest deterministic to more complex stochastic approach, both of which that can handle more complex engineering problems. We first present classical analytic solution along with rigorous definition of the classical Euler buckling problem starting from homogeneous beam with either simplified linearized theory or the most general geometrically exact beam theory. We then present the numerical solution to this problem by using reduced model constructed by discrete approximation based upon the weak form of the instability problem featuring von Karman (virtual) strain combined with the finite element method. We explain how such numerical approach can easily be adapted to solving instability problems much more complex than classical Euler's beam and in particular for heterogeneous beam, where analytic solution is not readily available. We finally present the stochastic approach making use of the Duffing oscillator, as the corresponding reduced model for heterogeneous Euler's beam within the dynamics framework. We show that such an approach allows computing probability density function quantifying all possible solutions to this instability problem. We conclude that increased computational cost of the stochastic framework is more than compensated by its ability to take into account beam material heterogeneities described in terms of fast oscillating stochastic process, which is typical of time evolution of internal variables describing plasticity and damage.