• Title/Summary/Keyword: Particles in Plasma

Search Result 459, Processing Time 0.025 seconds

Measurement of Airborne Particles and Volatile Organic Compounds Produced During the Heat Treatment Process in Manufacturing Welding Materials

  • Myoungho Lee;Sungyo Jung;Geonho Do;Yeram Yang;Jongsu Kim;Chungsik Yoon
    • Safety and Health at Work
    • /
    • v.14 no.2
    • /
    • pp.215-221
    • /
    • 2023
  • Background: There is little information about the airborne hazardous agents released during the heat treatment when manufacturing a welding material. This study aimed to evaluate the airborne hazardous agents generated at welding material manufacturing sites through area sampling. Methods: concentration of airborne particles was measured using a scanning mobility particle sizer and optical particle sizer. Total suspended particles (TSP) and respirable dust samples were collected on polyvinyl chloride filters and weighed to measure the mass concentrations. Volatile organic compounds and heavy metals were analyzed using a gas chromatography mass spectrometer and inductively coupled plasma mass spectrometer, respectively. Results: The average mass concentration of TSP was 683.1±677.4 ㎍/m3, with respirable dust accounting for 38.6% of the TSP. The average concentration of the airborne particles less than 10 ㎛ in diameter was 11.2-22.8×104 particles/cm3, and the average number of the particles with a diameter of 10-100 nm was approximately 78-86% of the total measured particles (<10 ㎛). In the case of volatile organic compounds, the heat treatment process concentration was significantly higher (p < 0.05) during combustion than during cooling. The airborne heavy metal concentrations differed depending on the materials used for heat treatment. The content of heavy metals in the airborne particles was approximately 32.6%. Conclusions: Nanoparticle exposure increased as the number of particles in the air around the heat treatment process increases, and the ratio of heavy metals in dust generated after the heat treatment process is high, which may adversely affect workers' health.

Validation of ICP-MS method for trace level analysis of Pb in plasma (혈장 중 극미량 납 분석을 위한 ICP-MS 분석법 검증)

  • Lee, Sung-Bae;Kim, Yong-Soon;Lee, Yong-Hoon;Ahn, Byung-Joon;Kim, Nam-Soo;Lee, Byung-Kook;Shin, Ho-Sang
    • Analytical Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.309-316
    • /
    • 2015
  • The analytical method of lead in plasma by ICP-MS was validated after securing environment within class 1,000 classification. We tested specificity and accuracy of within-run and between-run. According to measurement of the amount of suspended particulates in a clean room, 0.3~62 particles were detected in 0.3 µm size while 0.0~28.3 particles were observed in 0.5 µm size. Total suspended particulates met required environment with up to 90.3 particles. The MDL (Method detection limit) of the sample which has been fabricated using fetal bovine serum (FBS) blank was 1.77 ng/L, and LOQ (Limit of quantification) was 5.55 ng/L. The slope, intercept and correlation coefficient of the calibration curve were y=1.09×10−3x+4.88×10−2 and r=0.9999, which showed good correlation. The specificity, within-run and between-run accuracy satisfied the standard at more than 50 ng/L. The average lead concentration in plasma of the general people, current workers and retired workers was 55.4 ng/L, 440 ng/L, and 132 ng/L.

PLASMA DIAGNOSIS OF FANING TARGETS SPUTTERING SYSTEM FOR DEPOSITION OF BA FERRITE FILMS IN Ar, Xe AND $O_2$ GAS MIXTURE

  • Matsushita, Nobuhiro;Noma, Kenji;Nakagawa, Shigeki;Naoe, Masahiko
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.834-838
    • /
    • 1996
  • The diagnosis of the plasma in the facing targets sputtering system was performed in mixture gas of Ar 0.18-0.0 Pa, Xe 0.0-0.18 Pa and $O_2$ 0.02 Pa by using Langmiur's probe and the effect of plasma-damage to surface smoothness and magnetic characteristics of Ba ferrite films was clarified. The electron density $N_e$ and the electron temperature $T_e$ were evaluated at the center of the plasma and at the neighborhood of the anode ring. $T_e$ decreased and $N_e$ increased with increase of $P_{Xe}$ at the center of plasma. For the measurement at the neighborhood of the anode ring, $T_e$ was almost constant and $N_e$ took the minimum value at $P_{Xe}$ of 0.1 Pa, where Ba ferrite films with excellent c-axis orientation and magnetic characteristics were obtained. It was suggested that the restriction of the bombardment of recoiled particles as well as the suppress of plasma-damage were effective for obtaining good surface smoothness and excellent magnetic characteristics and it was useful for decreasing the crystallization temperature of Ba ferrite films.

  • PDF

Operation Characteristic of Filtered Vacuum Arc Source for Amorphous Diamond Coating (비정질 다이아몬드 코팅을 위한 자장여과 아크소스의 동작 특성에 관한 연구)

  • kim, Jong-Guk;Lee, Gu-Hyeon
    • 연구논문집
    • /
    • s.30
    • /
    • pp.147-157
    • /
    • 2000
  • The filtered vacuum arc source (FVAS), which is adopted by magnetic filtering methode to remove the macro-particle in vacuum arc plasma, was composed of a torus structure with bending angle of 60 degree. The radius of torus was 266 mm, the radius of plasma duct was 80 mm and the total length was 600 mm. The magnet parts were consisted of one permanent magnet, one magnetic yoke and five solenoid magnets. The plasma duct was electrically isolated from the ground so that a bias voltage could be applied. The baffles inside plasma duct were installed in order to prevent the recoil effect of macro-particles. Graphite was used as the cathode material to coat the amorphic diamond film and its diameter was 80 mm. The amorphic diamond film attracts much attention due to its excellent mechanical, optical and tribological properties suitable for wide range of applications. The effects of solenoid magnet in plasma extraction were studied by computer simulation and experiment using Taguchi's method. The source and extraction magnet affected the arc stabilization. The extraction beam current was maximized with low value of the source magnet current and high value of the filtering magnet current. Optimum deposition condition was obtained when the currents of arc discharge, source, extraction, bending, deflection and outlet magnet were 30 A, 1 A, 3 A, 5 A, and 5 A, respectively.

  • PDF

Study on Water Repellency of PTFE Surface Treated by Plasma Etching (플라즈마 에칭 처리된 PTFE 표면의 발수성 연구)

  • Kang, Hyo Min;Kim, Jaehyung;Lee, Sang Hyuk;Kim, Kiwoong
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.123-129
    • /
    • 2021
  • Many plants and animals in nature have superhydrophobic surfaces. This superhydrophobic surface has various properties such as self-cleaning, moisture collection, and anti-icing. In this study, the superhydrophobic properties of PTFE surface were treated by plasma etching. There were four important factors that changed the surface properties. Micro-sized protrusions were formed by plasma etching. The most influential parameter was RF Power. The contact angle of the pristine PTFE surface was about 113.8°. The maximum contact angle of the surface after plasma treatment with optimized parameters was about 168.1°. In this case, the sliding angle was quite small about 1°. These properties made it possible to remove droplets easily from the surface. To verify the self-cleaning effect of the surface, graphite was used to contaminate the surface and remove it with water droplets. Graphite particles were easily removed from the optimized surface compared to the pristine surface. As a result, a surface having water repellency and self-cleaning effects could be produced with optimized plasma etching parameters.

Microstructure and Tribological Characteristics of AlSi-Al$_2$O$_3$ Composite Coating Prepared by Plasma Spray (플라즈마 용사에 의한 AlSi-Al$_2$O$_3$ 복합재료 코팅층의 미세조직 및 마찰.마모특성)

  • Min Joon-Won;Yoo Seung-Eul;Kim Young-Jung;Suhr Dong-Soo
    • Journal of Welding and Joining
    • /
    • v.22 no.5
    • /
    • pp.46-52
    • /
    • 2004
  • AlSi-Al$_2$O$_3$ composite layer was prepared by plasma spray on steel substrate. The composite powder for plasma spray was prepared by simple mechanical blending. The wear resistance of the composite layers and matrix aluminum alloy were performed in terms of size distribution of ceramic particles. Friction coefficients of AlSi were decreased with incorporation of $Al_2$O$_3$. The tribological properties of coated layers were affected by the size of incorporated $Al_2$O$_3$ particle. The reinforcement of $Al_2$O$_3$ particle into aluminum alloy matrix decreased the friction coefficient as well as wear loss.

Tribological Behavior of the Plasma Sprayed Fe$_2$O$_3$Added Zirconia Based Coatings ($Fe_2{O_3}$가 첨가된 지르코니아계 용사코팅층의 마모마찰 특성)

  • 신종한;임대순;안효석
    • Tribology and Lubricants
    • /
    • v.16 no.2
    • /
    • pp.84-90
    • /
    • 2000
  • High Temperature wear behavior of plasma sprayed zirconia coatings containing up to 10 mol% of Fe$_2$O$_3$ were investigated. The wear test results showed that the addition of Fe$_2$O$_3$ particles to zirconia improved the wear resistance and lowered the coefficient of friction. Optimum concentration of Fe$_2$O$_3$ was about 5 mol%. Similar degradation behavior was observed at about 40$0^{\circ}C$ for both zirconia and Fe$_2$O$_3$ added zirconia coatings. The results indicated that stabilization of tetragonal phase and changes in mechanical properties such as hardness and toughness were responsible for tribological behavior of plasma sprayed zirconia contain Fe$_2$O$_3$.

Numerical Analysis on the Control of Particle-laden Flow Using Electromagnetic Field (전기자장에 의한 혼상류의 제어에 관한 수치해석)

  • NAM Seong-Won;KAMIYAMA Shin-icki
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1996.05a
    • /
    • pp.125-130
    • /
    • 1996
  • A numerical analysis is conducted on heat transfer and fluid flow of a plasma spraying process under the DC-RE hybrid electromagnetic field. Plasma flow is analyzed by using Eulerian approach and the equation of particle motion is simultaneously solved using a trajectory analysis with a lumped-heat-capacity model. Axisymmetric two dimensional electromagnetic fields governed by Maxwell's equations are solved based on a vector potential concept. The effects of the RF electromagnetic field on the temperature and velocity fields of the turbulent plasma flow are clarified. Control characteristics of phase changes and dispersed features of particles by applying the RF electromagnetic field are also clarified in an attempt to improve the plasma spraying process

  • PDF

Light Scattering Analysis on Coagulation Detection with Magnetic Particles

  • Nahm, Kie B.
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.623-628
    • /
    • 2018
  • Clotting properties of human blood are important clinical information to monitor for patients with platelet and coagulation disorders. Most devices used to diagnose these disorders utilize blood plasma together with tissue factors and $Ca^{{+}{+}}$ additives. In some instruments, magnetic particles were mixed with blood samples and a rotating magnetic field was applied, resulting in the rotation of magnetic particles, which was probed by impinging light. The working principle seems obvious yet had not been investigated in depth. We modeled the collective behavior of light propagating through magnetic needles, aligned in the direction of the rotating external magnetic field, with scattering light analysis software. Simulation results indicated that the scattering pattern undergoes periodic undulations with respect to the slant angle of the magnetic needles. Also provided is a means of extracting meaningful information from the scattering measurement.

Improvement of Microstructural and Mechanical Properties of Ti-6Al-4V Alloy by Plasma Carburization (Ti-6Al-4V 합금의 미세조직 및 기계적 특성에 미치는 Plasma 침탄 처리의 영향)

  • Park, Yong-Gwon;Kim, Taek-Su;Ji, Tae-Gu;Wey, Myeong-Yong
    • Korean Journal of Materials Research
    • /
    • v.12 no.5
    • /
    • pp.341-346
    • /
    • 2002
  • In order to improve the low wear resistance of Ti-6Al-4V alloy, plasma carburization treatment was newly carried out without consumption of its good specific strength and fatigue life over the temperature. Effect of the plasma carburization was analyzed and compared with the non-treated alloy by microstructural observation, structure characterization and mechanical property test. The plasma treated alloy formed a carburized layer of about 150$\mu\textrm{m}$ in depth from the surface, where a fine and hard particles of TiC and $V_4C_3$ were homogeneously dispersed through the layer. It was also found that an increase of the wear resistance, fatigue life and hardness, due to the hard and fine dispersoids.