• Title/Summary/Keyword: Particle-in-cell method

Search Result 250, Processing Time 0.032 seconds

Ammonia Decomposition Over Tantalum Carbides of Hydrogen Fuel Cell (수소연료전지용 탄탈륨 탄화물에 대한 암모니아 분해반응)

  • Choi, Jeong-Gil
    • New & Renewable Energy
    • /
    • v.9 no.1
    • /
    • pp.51-59
    • /
    • 2013
  • Tantalum carbide crystallites which is to be used for $H_2$ fuel cell has been synthesized via a temperature-programmed reduction of $Ta_2O_5$ with pure $CH_4$. The resultant Ta carbide crystallites prepared using two different heating rates and space velocity exhibit the different surface areas. The $O_2$ uptake has a linear relation with surface area, corresponding to an oxygen capacity of $1.36{\times}10^{13}\;O\;cm^{-2}$. Tantalum carbide crystallites are very active for hydrogen production form ammonia decomposition reaction. Tantalum carbides are as much as two orders of magnitude more active than Pt/C catalyst (Engelhard). The highest activity has been observed at a ratio of $C_1/Ta^{{\delta}+}=0.85$, suggesting the presence of electron transfer between metals and carbon in metal carbides.

Fabrication Characteristics and Electrochemical Studies of SOFC Unit Cell using ScSZ-based Electrolyte Powder prepared by Co-precipitation Synthesis (공침법에 의한 고체산화물연료전지용 ScSZ계 전해질의 제조공정 특성 및 전기화학적 평가)

  • Kang, Ju Hee;Lee, Ho Jae;Kim, Ho-Sung;Jeong, Jong Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.138.2-138.2
    • /
    • 2010
  • Scandium-doped zirconium, ScSZ-based electrolyte, provides higher oxygen conductivity than YSZ and nano-based electrolyte materials are ideal for fabricating thin film electrolyte membrane of SOFC unit cell. Moreover, it may be applied to anode and cathode as well as electrolyte as ionic conductor. In this report, nano-based ScSZ-based electrolyte powder was prepared by co-precipitation synthesis. The particle size, surface area and morphology of the powder were observed by SEM and BET. Thin film electrolyte of under $10{\mu}m$ was fabricated by tape casting and co-firing using the synthesized ScSZ-based powders, and ionic conductivity and gas permeability of electrolyte film were evaluated. Finally, the SOFC unit cell was fabricated using the anode-supported electrolyte prepared by a tape casting method and co-sintering. Electrochemical evaluations of the SOFC unit cell, including measurements such as power density and impedance, were performed and analyzed.

  • PDF

Simple and Highly Efficient Droplet Merging Method using Viscosity Difference (점도 차이를 이용한 간단하고 효율적인 액적의 병합 방법)

  • Jin, Byung-Ju;Kim, Young-Won;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1752-1757
    • /
    • 2008
  • Simple and highly efficient droplet merging method is proposed, which enables two nanoliter or picoliter droplets to merge regularly in a straight microchannel. We observe that two droplets of the same size but of different viscosities are merged by velocity difference induced as they are transported with the carrier fluid. To make viscosity difference, the mass ratio of water and glycerol is varied. Two droplets of the same size or of different sizes are generated alternatingly in the cross channel by controlling flowrates. This droplet merging method can be used to mix or encapsulate one target sample with another material, so that it can be applied to cell lysis, particle synthesis, drug discovery, hydrogel-bead production, and so on.

  • PDF

Synthesis and Characteristic of Ni/VSZ Cermet for High Temperature Electrolysis Prepared by Mechanical Alloying Method (Mechanical Alloying Method로 제조된 고온수전해용 Ni/YSZ cermet의 제조 및 특성)

  • Chae, Ui-Seok;Hong, Hyun-Sean;Choo, Soo-Tae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.4
    • /
    • pp.372-378
    • /
    • 2005
  • Ni/YSZ ($Y_2O_3$-stabilized $ZrO_2$) composite powder for a cathode material in high temperature electrolysis(HTE) was synthesized by a mechanical alloying method with Ni and YSZ powder. Microstructure of the composite and cell thickness for HTE reaction has been analyzed with various techniques of XRD, SEM to investigate effects of fabrication conditions. Employing the composite material, furthermore, the unit cell for HTE has been studied to evolve hydrogen from water. XRD patterns showed that the composites after wet mechanical alloying were composed of respective nano-sized crystalline Ni and YSZ. While ethanol as additive for mechanical alloying increased to $20\;{\mu}m$ of average particle size of the composites, alpha-terpineol effectively decreased to sub-micro size of that. This study has been found out the evolution of hydrogen by HTE reaction employing the fabricated cathode material, showing 1.4 ml/min of $H_2$ generation rate as increasing $20\;{\mu}m$ of cathode thickness.

Preparation and Characteristics of Poly(ε-caprolactone) Microcapsules Containing Pseudomonas by W/O/W Emulsion (다중에멀젼법을 통한 슈도모나스를 함유하는 PCL 마이크로캡슐의 제조 및 특성 연구)

  • Kim, Ki-Seok;Lee, Seung-Yeop;Lee, Gun-Woong;Kim, Hyung-Gon;Park, Soo-Jin
    • Polymer(Korea)
    • /
    • v.36 no.2
    • /
    • pp.202-207
    • /
    • 2012
  • Biodegradable poly(${\varepsilon}$-caprolactone)(PCL) microcapsules containing pseudomonas were prepared by W/O/W emulsion system. The characteristics and release behaviors of the microcapsules were investigated as a function of manufacturing conditions. The morphology and particle distribution of the microcapsules were observed by a scanning electron microscope and a particle size analyzer. The release behaviors of the pseudomonas were determined using a cell culture method. It was found that smooth and spherical microcapsules were formed by W/O/W emulsion system and particle size was in the range of 10 to 60 ${\mu}m$. The release behaviors of the pseudomonas were influenced by the manufacturing conditions. It was indicated that the increase of the surfactant content and stirring rate led to an increased release rate, resulting from the high specific surface area of the smaller particle size, and the increase of the PCL content provided the sustained release behaviors by the delay effect of diffusion in the release medium.

Synthesis of Nanopowders by Hydrothermal Method and their Application to Dye-sentisized Solar Cell Materials (수열합성을 이용한 나노분말 합성 및 연료감응태양전지 응용)

  • Lim, JinYoung;Ahn, Jeongseok;Ahn, Jung-Ho
    • Journal of Powder Materials
    • /
    • v.25 no.4
    • /
    • pp.309-315
    • /
    • 2018
  • In the present work, we synthesize nano-sized ZnO, $SnO_2$, and $TiO_2$ powders by hydrothermal reaction using metal chlorides. We also examine the energy-storage characteristics of the resulting materials to evaluate the potential application of these powders to dye-sensitized solar cells. The control of processing parameters such as pressure, temperature, and the concentration of aqueous solution results in the formation of a variety of powder morphologies with different sizes. Nano-rod, nano-flower, and spherical powders are easily formed with the present method. Heat treatment after the hydrothermal reaction usually increases the size of the powder. At temperatures above $1000^{\circ}C$, a complete collapse of the shape occurs. With regard to the capacity of DSSC materials, the hydrothermally synthesized $TiO_2$ results in the highest current density of $9.1mA/cm^2$ among the examined oxides. This is attributed to the fine particle size and morphology with large specific surface area.

Gene expression of feline leukemia virus(FeLV) in cat kidney cells with radioimmunoassay using beta-emission of $^{131}I$ (요오드 131$^{131}I$의 beta-emission을 이용한 면역방사성표지법에 의한 feline leukemia virus의 유전자 발현에 관한 연구)

  • 박만훈;노현모
    • Korean Journal of Microbiology
    • /
    • v.21 no.2
    • /
    • pp.61-70
    • /
    • 1983
  • Synchronized cat kidney cells chronically infected with feline leukemia virus (FeLV) were used to study virus production, the synthesis of group specific antigen (gag) and envelope (env) proteins, the expression of env protein on the cell surface during the cell cycle, and the stability of viral RNA. As detecting method, we developed the radioimmunoassay (RIA) system using beta-emission of $^{131}I$ and demonstrated the validity of this system by comparison with routine RIA system using gamma-emission of $^{125}I$. The produced virus was analysed by developed RIA interval was determined by measuring reverse transcriptase activity. The results show that infected cells produce the complete virus particle containing products of gag, env and pol genes of FeLV, and maximum virus production occurs during mitosis of synchronized cells. Labeling of the cell surface of synchronized cells with $^{131}I$ shows that the amount of $gp70^{env}$ on the cell surface parallels cellular gorwth. Therefore, the cell cycle-dependent release of virus is not petition RIA of synchronized cells with $^{131}I$ labeled viral proteins synthesis during the cell cycle. The rate of synthesis of gag protein shows three peaks, corresponding to the $G_1,\;late\;S\;and\;late\;G_2$ phases of cell cycle. But the rate of synthesis of env protein dose not change, suggesting that in these cells the synthesis of these two gene products in controlled seperately. In Actionomycin D treated cells, the synthesis of viral proteins decreased sharply from 8 hours after treatment, and the late S and $G_2$ peaks of gag protein synthesis were disappeared. This shows the stability of viral RNA for about 6 hours in the absence of continuing viral RNA synthesis.

  • PDF

Geometrically Inhomogeneous Random Configuration Effects of Pt/C Catalysts on Catalyst Utilization in PEM Fuel Cells (연료전지 촉매층 내 촉매활성도에 대한 탄소지지 백금 촉매의 기하학적 비등방성 효과에 관한 연구)

  • Shin, Seungho;Kim, Ah-Reum;Jung, Hye-Mi;Um, Sukkee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.10
    • /
    • pp.955-965
    • /
    • 2014
  • Transport phenomena of reactant and product are directly linked to intrinsic inhomogeneous random configurations of catalyst layer (CL) that consist of ionomer, carbon-supported catalyst (Pt/C), and pores. Hence, electrochemically active surface area (ECSA) of Pt/C is dominated by geometrical morphology of mass transport path. Undoubtedly these ECSAs are key factor of total fuel cell efficiency. In this study, non-deterministic micro-scale CLs were randomly generated by Monte Carlo method and implemented with the percolation process. To ensure valid inference about Pt/C catalyst utilization, 600 samples were chosen as the number of necessary samples with 95% confidence level. Statistic results of 600 samples generated under particular condition (20vol% Pt/C, 30vol% ionomer, 50vol% pore, and 20nm particle diameter) reveal only 18.2%~81.0% of Pt/C can construct ECSAs with mean value of 53.8%. This study indicates that the catalyst utilization in fuel cell CLs cannot be identical notwithstanding the same design condition.

무거운 이온을 포함하고 있는 플라스마에서 Pseudo-Potential Method와 1d PIC Simulation

  • Choe, Jeong-Rim;Min, Gyeong-Uk;Lee, Dae-Yeong;Ra, Gi-Cheol;Lee, Dong-Ryeol;Yu, Chang-Mo
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.43.4-44
    • /
    • 2009
  • electron, ion, heavy ion으로 구성 된 plasma에서 hump type과 kink type(double layer)의 electrostatic solitary waves이 존재할 수 있다는 것을 pseudopotential method를 이용한 결과와 1d PIC(Particle-In-Cell) simulation method의 결과에서 각각 확인하였다. 1d PIC simulation에서 초기에 각각의 입자 종(species; electron, ion, heavy ion)의 밀도섭동(density perturbation)은 Gaussian 형태로 주었으며, 각각의 입자들의 drift velocity는 각각의 plasma 입자 종들의 thermal velocity로 나란한 방향으로 주었다.

  • PDF

In vitro Anticancer Activity of Paclitaxel Incorporated in Low-melting Solid Lipid Nanoparticles

  • Lee, Mi-Kyung;Yang, Jae-Heon
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.3
    • /
    • pp.201-205
    • /
    • 2009
  • Triglyceride solid lipid with medium chain fatty acid, tricaprin (TC), was used as a core matrix of lipid nanoparticles (LN) to solubilize water-insoluble paclitaxel and enhance the stability of nanoparticles by immobilization of incorporated drug in the solid core during storage at low temperature. In the present study, TC-LN containing paclitaxel was prepared by hot melt homogenization method using TC as a core lipid and phospholipids as stabilizers. The particle size of TC-LN containing paclitaxel was less than 200 nm and its zeta potential was around -40 mV. Calorimetric analysis showed TC core could be solidified by freezing and thawing in the manufacturing process in which the hot dispersion should be prepared at elevated temperature and subsequently cooled to obtain solid lipid nanoparticles. The melting transition of TC core was observed at $27.5^{\circ}C$, which was lower than melting point of TC bulk. The particle size of TC-LN remained unchanged when kept at $4^{\circ}C$. Paclitaxel containing TC-LN showed comparable anticancer activity to the Cremophore ELbased paclitaxel formulation against human ovarian (OVCAR-3) and breast (MCF-7) cancer cell lines. Thus, lipid nanoparticles with medium chain solid lipid may have a potential as alternative delivery system for parenteral administration of paclitaxel.