• 제목/요약/키워드: Particle-in-cell method

검색결과 250건 처리시간 0.028초

Invention of Ultralow - n SiO2 Thin Films

  • Dung, Mai Xuan;Lee, June-Key;Soun, Woo-Sik;Jeong, Hyun-Dam
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.281-281
    • /
    • 2010
  • Very low refractive index (<1.4) materials have been proved to be the key factor improving the performance of various optical components, such as reflectors, filters, photonic crystals, LEDs, and solar cell. Highly porous SiO2 are logically designed for ultralow refractive index materials because of the direct relation between porosity and index of refraction. Among them, ordered macroporous SiO2 is of potential material since their theoretically low refractive index ~1.10. However, in the conventional synthesis of ordered macroporous SiO2, the time required for the crystallization of organic nanoparticles, such as polystyrene (PS), from colloidal solution into well ordered template is typical long (several days for 1 cm substrate) due to the low interaction between particles and particle - substrate. In this study, polystyrene - polyacrylic acid (PS-AA) nanoparticles synthesized by miniemulsion polymerization method have hydrophilic polyacrylic acid tails on the surface of particles which increase the interaction between particle and with substrate giving rise to the formation of PS-AA film by simply spin - coating method. Less ordered with controlled thickness films of PS-AA on silicon wafer were successfully fabricated by changing the spinning speed or concentration of colloidal solution, as confirmed by FE-SEM. Based on these template films, a series of macroporous SiO2 films whose thicknesses varied from 300nm to ~1000nm were fabricated either by conventional sol - gel infiltration or gas phase deposition followed by thermal removal of organic template. Formations of SiO2 films consist of interconnected air balls with size ~100 nm were confirmed by FE-SEM and TEM. These highly porous SiO2 show very low refractive indices (<1.18) over a wide range of wavelength (from 200 to 1000nm) as shown by SE measurement. Refraction indices of SiO2 films at 633nm reported here are of ~1.10 which, to our best knowledge, are among the lowest values having been announced.

  • PDF

Effect of particle size and scanning cup type for near infrared reflection on the soil property measurement

  • Ryu, Kwan-Shig;Cho, Rae-Kwang;Park, Woo-Churl;Kim, Bok-Jin
    • Near Infrared Analysis
    • /
    • 제1권2호
    • /
    • pp.35-39
    • /
    • 2000
  • The purpose of this research was to find out suitable soil sample preparation and sample holding tools for NIR reflection radiation for estimating soil components. NIR reflectance was scanned at 2nm intervals from 1,100 to 2,500nm with an InfraAlyzer 500(Bran+Luebbe Co.). Coarse(2.0mm) and fine(0.5mm) soil sample and various sample holding tools were used to obtain mean diffuse reflection of the soil for the calibration and validation of the calibration set in estimating moisture, organic matter and total nitrogen of the soils. Multiple linear regression was used to obtain the best correlation of NIR spectroscopy method. Correlation of NIR spectroscopy method. Correlation of NIR spectra for finely and coarsely sized soil did not show much difference. The standard errors of prediction(SE) using different types of sample holding tools for organic matter, total nitrogen and soil moisture were better than 0.765, 0.041 and 0.63% respectively. From the results it can be concluded that NIR spectroscopy with flow type cell could be used as a fast routine testing method in quantitative determination of organic matter, total nitrogen and soil moisture.

$TiO_2$ 두께에 따른 염료감응형 태양전지의 효율 변화 (The Effect of $TiO_2$ Thickness on the Performance of Dye-Sensitized Solar Cells)

  • 김대현;박미주;이성욱;최원석;홍병유
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.147-148
    • /
    • 2007
  • Dye-sensitized solar cell using conversion of solar energy to electrical energy appeared that which solves a environmental matter. The dye-sensitized solar cell uses nano-crystalline oxide semiconductor for absorbing dye. The $TiO_2$ is used most plentifully. The efficiency of the dye-sensitized solar cell changes consequently in the particle size, morphology, crystallization and surface state of the $TiO_2$. In this paper, we report The effect of titania$(TiO_2)$ thickness on the performance of dye-sensitized solar cells. Using doctor blade method, It produced the thickness of the $TiO_2$ with $7\;{\mu}m,\;10\;{\mu}m,\;13\;{\mu}m$. The efficiency was the best from $10{\mu}m$. It had relatively low efficiency on the thickness from $7\;{\mu}m\;to\;13\;{\mu}m$. The reason why it presents low efficiency on $7\;{\mu}m$ thickness is that excited electrons can not be delivered enough due to thin thickness of $7\;{\mu}m\;TiO_2$. And The reason why it presents low efficiency on $13\;{\mu}m$ thickness is that thick $13\;{\mu}m\;TiO_2$ can not penetrate the sunlight enough.

  • PDF

Photoelectric Characteristics of Nanocrystalline TiO2 Film Prepared from TiO2 Colloid Sol for Dye‐Sensitized Solar Cell

  • Hwang, Kyung-Jun;Lee, Jae-Wook;Yoon, Ho-Sung;Jang, Hee-Dong;Kim, Jin-Geol;Yang, Jin-Suk;Yoo, Seung-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권10호
    • /
    • pp.2365-2370
    • /
    • 2009
  • A working electrode in dye-sensitized solar cells was fabricated using $TiO_2$ colloidal sol prepared from titanium isopropoxide used as a starting material by applying the sol-gel method. The effect of aging times and temperatures on physical and chemical properties of $TiO_2$ sol particles was systematically investigated. Results showed that the crystallinity and average particle size of $TiO_2$ colloidal sol can be successfully controlled by the adjustment of aging time and temperature. The conversion efficiency of the repetitive dry coating films fabricated using the dried $TiO_2$ colloidal sol particles and hydroxypropyl cellulose binder (15%) was 10.31% with a high transparency.

산소 환원 반응을 위한 탄소기반 Pt-Cu 합금의 높은 전기적 촉매 활성 (High Electrochemical Activity of Pt-Cu Alloy Support on Carbon for Oxygen Reduction Reaction)

  • 김한슬;류수착;이영욱;신태호
    • 한국수소및신에너지학회논문집
    • /
    • 제30권6호
    • /
    • pp.549-555
    • /
    • 2019
  • Electrocatalysis of oxygen reduction reaction (ORR) using Pt nanoparticles or bimetal on carabon was studied. Currently, the best catalyst is platinum, which is a limited resource and expensive to commercialize. In this paper, we investigated the cheaper and more active electrocatalysts by making Pt nanoparticles and adding 3D transition metal such as copper. Electrocatalysts were obtained by chemical reduction based on ethylene glycol solutions. Elemental analysis and particle size were confirmed by XRD and TEM. The electrochemical surface area (ECSA) and activity of the catalyst were determined by electrochemical techniques such as cyclic voltammetry and linear sweep voltammetry method. The commercialized Pt support on carbon (Pt/C, JM), synthesis Pt/C and synthesis Pt3Cu1 alloy nanoparticles supported on carbon were compared. We confirmed that the synthesized Pt3-Cu1/C has high electrochemical performance than commercial Pt/C. It is expected to develop an electrocatalyst with high activity at low price by increasing the oxygen reduction reaction rate of the fuel cell.

Computational fluid dynamic simulation with moving meshes

  • Yun, Kiyun;Kim, Juhan;Yoon, Suk-Jin
    • 천문학회보
    • /
    • 제38권2호
    • /
    • pp.101.2-101.2
    • /
    • 2013
  • We present a new computational fluid dynamic (CFD) simulation code. The code employs the moving and polyhedral unstructured mesh scheme, which is known as a superior approach to the conventional SPH (smoothed particle hydrodynamics) and AMR (adaptive mesh refinement) schemes. The code first generates unstructured meshes by the Voronoi tessellation at every time step, and then solves the Riemann problem for surfaces of every Voronoi cell to update the hydrodynamic states as well as to move former generated meshes. For the second-order accuracy, the MUSCL-Hancock scheme is implemented. To increase efficiency for generating Voronoi tessellation we also develop the incremental expanding method, by which the CPU time is turned out to be just proportional to the number of particles, i.e., O(N). We will discuss the applications of our code in the context of cosmological simulations as well as numerical experiments for galaxy formation.

  • PDF

Unstructured Moving-Mesh Hydrodynamic Simulation

  • Yun, Kiyun;Kim, Juhan;Yoon, Suk-Jin
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.65.2-65.2
    • /
    • 2014
  • We present a new hydrodynamic simulation code based on the Voronoi tessellation for estimating the density precisely. The code employs both of Lagrangian and Eulerian description by adopting the movable mesh scheme, which is superior to the conventional SPH (smoothed particle hydrodynamics) and AMR (adaptive mesh refinement) schemes. The code first generates unstructured meshes by the Voronoi tessellation at every time step, and then solves the Riemann problem for all surfaces of each Voronoi cell so as to update the hydrodynamic states as well as to move current meshes. Besides, the IEM (incremental expanding method) is devised to compute the Voronoi tessellation to desired degree of speed, thereby the CPU time is turned out to be just proportional to the number of particles, i.e., O(N). We discuss the applications of our code in the context of cosmological simulations as well as numerical experiments for galaxy formation.

  • PDF

광-전기역학 기술을 이용한 미생물의 미세유체역학적 제어 (Opto-electrokinetic Technique for Microfluidic Manipulation of Microorganism)

  • 권재성
    • 한국가시화정보학회지
    • /
    • 제17권1호
    • /
    • pp.69-77
    • /
    • 2019
  • This paper introduces microfluidic manipulation of microorganism by opto-electrokinetic technique, named rapid electrokinetic patterning (REP). REP is a hybrid method that utilizes the simultaneous application of a uniform electric field and a focused laser to manipulate various kinds and types of colloidal particles. Using the technique in preliminary experiments, we have successfully aggregated, translated, and trapped not only spherical polystyrene, latex, and magnetic particles but also ellipsoidal glass particles. Extending the manipulation target to cells, we attempted to manipulate saccharomyces cerevisiae (S. cerevisiae), the most commonly used microorganism for food fermentation and biomass production. As a result, S. cerevisiae were assembled and dynamically trapped by REP at arbitrary location on an electrode surface. It firmly establishes the usefulness of REP technique for development of a high-performance on-chip bioassay system.

TiO2 나노 입자의 크기와 결정 구조가 염료감응형 태양전지의 광전 효율에 미치는 영향 (Effect of Particle Size and Structure of TiO2 Semiconductor on Photoelectronic Efficiency of Dye-sensitized Solar Cell)

  • 이현주;박노국;이태진;한기보;강미숙
    • 청정기술
    • /
    • 제19권1호
    • /
    • pp.22-29
    • /
    • 2013
  • 본 연구는 염료감응형 태양전지의 구성요소 중 핵심 소재로 주목받고 있는 티타니아($TiO_2$) 나노입자의 크기와 결정구조에 따른 광전 효율을 비교하고자 하였다. 나노입자의 크기는 용매열법(solvothermal method)을 이용하여 출발 용액의 pH를 조절하고 결정구조의 차이는 솔-젤법에 의해 얻어진 무정형의 티타니아를 온도를 달리하여 소성함으로써 조절되었다. 그 결과, 용매법으로는 8.9, 12.8 그리고 20.2 nm의 크기를 가지는 세 종류의 아나타제 티타니아를, 솔-젤법으로는 세 종류의 아나타제-루타일(anatase-rutile) 혼합결정구조를 가지는 티타니아를 얻었다. 여섯 종류의 샘플 중 20.2 nm 크기의 아나타제 결정구조의 티타니아를 광 전극으로 사용한 염료감응형 태양전지 단위 셀에서 8.6%로 가장 좋은 광전 효율을 얻었다.

연료전지용 다공성전극에 있어서 백금촉매의 분산성개선 (Improvement of Platinum Particle Dispersion on Porous Electrode for Phosphoric Acid Fuel Cell)

  • 박정일;김조웅;이주성
    • 공업화학
    • /
    • 제1권2호
    • /
    • pp.224-231
    • /
    • 1990
  • 백금촉매의 분산을 향상시키기 위하여 카본블랙의 표면처리, 용매, 계면활성제 및 초음파분산기에 따른 효과를 고찰하였다. 카본블랙을 산화처리하여 카본블랙 표면에 친수성기인 작용기들을 도입함으로써 작용기들이 염화백금산 이온의 anchorage center역할을 하여 이 염화백금산을 환원시킬 때 백금입자(이온)의 이동이나 성장을 억제시켜 미립화 시킬 수 있다고 생각되었다. 혼합용매, 계면활성제, 초음파분산기 등을 이용한 경우, 염화 백금산이온이 anchorage center 역할을 하고 있는 작용기들에 까지 잘 스며들어감으로써 백금촉매의 분산성이 향상됨을 알았다. 혼합용매에 초음파분산기를 사용하여 공기산화시킨 카본블랙에 백금촉매를 담지시킨 결과, 분산성이 가장 우수하였으며 입자크기는 $30A^{\circ}$ 이하로 미립화 되었다.

  • PDF