• 제목/요약/키워드: Particle-free

검색결과 608건 처리시간 0.031초

수침과 입자크기를 달리한 쌀가루와 쌀 만주제조 특성 (Characteristics of Preparation of Rice Manju and Rice Flour with Soaking and Different Particle Sizes)

  • 이승현;신말식
    • 한국식품조리과학회지
    • /
    • 제25권4호
    • /
    • pp.427-434
    • /
    • 2009
  • To increase rice consumption and substitute rice flour for wheat flour to make gluten-free bakery products, the physicochemical and pasting properties of rice flours prepared from raw and soaked rices passed through different size screens were investigated. The quality properties of manju dough and preparation of rice manju were also measured. Dry milled flour with soaked rice (DMFSR) were decreased in ash and crude lipid contents compared to dry milled flour with raw rice (DMFRR). Water binding capacity, damaged starch content, and L value of rice flour increased with decreasing particle size, but the b value decreased. Peak, cold, and breakdown viscosities of DMFSR were higher than those of DMFRR by RVA. Hardness of manju dough with DMFSR was lower than that with DMFRR, but that of manju shell exhibited a reverse trend. Sensory difference testing revealed the smoothness of surface, hardness, roughness, and overall quality were significantly different (p<0.05). The smoothness of the surface of manju with DMFRR-200 and all DMFSR were better than that of manju prepared with wheat flour. Hardness showed lower values in DMFRR-200, and all DMFSR as well as wheat flour and roughness decreased with decreasing particle size. Rice manju with wheat flour, DMFRR-200, DMFSR-120, and DMFSR-170 ranked above 5 points and were not significantly different (p<0.05).

무유화중합에 의한 단분산 Submicron 크기의 고분자 미립자의 제조 (Preparation of Monodisperse Submicron-Sized Polymeric Particles by Emulsifier-Free Emulsion Polymerization)

  • 이기창
    • 접착 및 계면
    • /
    • 제13권3호
    • /
    • pp.101-108
    • /
    • 2012
  • 음이온개시제인 $K_2S_2O_8$ (KPS)와 양이온개시제인 2,2' azobis(2-methyl-propionamidine) dihydrochloride (AIBA)를 이용하여 MMA와 BMA 단량체간의 무유화공중합을 성공적으로 수행하여 PSD가 1.002~1.008인 단분산성이 우수한 poly(BMA-co-MMA)와 PBMA 라텍스들을 제조하였다. 실험결과, 160~494 nm 범위의 수평균입자경과 (1.25~7.55) ${\times}10^4$ 범위의 수평균분자량을 나타내었다. MMA/BMA 유화중합에 따르는 중합속도와 단량체 및 개시제 농도, DVB/EGDMA 가교제 농도, 중합온도 변화에 따르는 수평균입자경과 수평균분자량의 영향을 조사하였다. MMA/BMA 단량체 중 MMA 농도가 증가함에 따라 중합속도가 증가하였으며 일반적으로 이들 라텍스의 평균입자경과 평균분자량은 MMA/BMA 단량체중량비, 단량체량, 개시제량, 중합온도에 따라 쉽게 조절됨을 발견하였다.

자유표면 유동해석을 위한 WMLS 기반 입자법 기술 개발 (Development of WMLS-based Particle Simulation Method for Solving Free-Surface Flow)

  • 남정우;박종천;박지인;황성철;허재경;정세민
    • 한국해양공학회지
    • /
    • 제28권2호
    • /
    • pp.93-101
    • /
    • 2014
  • In general, particle simulation methods such as the MPS(Moving Particle Simulation) or SPH(Smoothed Particle Hydrodynamics) methods have some serious drawbacks for pressure solutions. The pressure field shows spurious high fluctuations both temporally and spatially. It is well known that pressure fluctuation primarily occurs because of the numerical approximation of the partial differential operators. The MPS and SPH methods employ a pre-defined kernel function in the approximation of the gradient and Laplacian operators. Because this kernel function is constructed artificially, an accurate solution cannot be guaranteed, especially when the distribution of particles is irregular. In this paper, we propose a particle simulation method based on the moving least-square technique for solving the partial differential operators using a Taylor-series expansion. The developed method was applied to the hydro-static pressure and dam-broken problems to validate it.

Testosterone-encapsulated Surfactant-free Nanoparicles of Poly(DL-lactide-co-glycolide): Preparation and Release Behavior

  • Jeong, Young-Il;Shim, Yong-Ho;Song, Ki-Chan;Park, Youeng-Guen;Ryu, Hwa-Won;Nah, Jae-Woon
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권11호
    • /
    • pp.1579-1584
    • /
    • 2002
  • Since surfactant or emulsifiers remained on the nanoparticle surface significantly affect the physicochemical properties, the biodegradation rate, the biodistribution, and the biocompatibility of nanoparticles, surfactant-free nanoparticles should be good candidate. surfactant-free PLGA nanoparticles were successfully prepared by both the dialysis method and the solvent diffusion method. The PLGA nanoparticles prepared using the solvent diffusion method has a smaller particle size than the dialysis method. The solvent diffusion method was better for a higher loading efficiency than the dialysis method but the nanoparticle yield was lower. Testosterone (TST) release from the PLGA nanoparticles was dependent on the particle size rather than the drug contents. Testosterone release from the PLGA nanoparticles prepared by the solvent diffusion method using acetone was faster than those prepared by the dialysis method. TST release from the PLGA nanoparticles prepared by the solvent diffusion method using acetone and the dialysis method using dimethylformamide (DMF) was completed for 4 days while the PLGA nanoparticles prepared by the dialysis method using acetone showed approximately 80% TST release after 4 days. Since the PLGA nanoparticle degradation ratio was below 20% within 5 days at all samples while TST release completed within 4 days, TST release was dependent on the diffusion mechanism rather than degradation.

결절법을 이용한 전영역에서의 연기입자 응집체에 대한 브라운응집현상 해석 (Simulation of the Brownian Coagulation of Smoke Agglomerates in the Entire Size Regime using a Nodal Method)

  • 구재학
    • 한국대기환경학회지
    • /
    • 제27권6호
    • /
    • pp.681-691
    • /
    • 2011
  • The size distributions of smoke particles from fire are prerequisite for the studies on fire detection and adverse health effects. Above the flame of the fire, coagulation dominates and the smoke particles grow from 1 to 50 nm up to 100 to 3,000 nm, sizes ranging from the free-molecular regime to the continuum regime. The characteristics of the agglomeration of the smoke particles are well known, independently for each of the free-molecular and continuum regimes. However, there are not many systematic studies in the entire regime by the complexity of the mechanisms. The purpose of this work is to find the characteristics of the development of the size distribution of smoke particles by agglomeration in the entire size range covering the free-molecular regime, via transition regime, to the near-continuum and continuum regime for each variation of parameters such as fractal dimension, primary particle size and dimensionless coagulation time. In this work, the dynamic equation for the discrete-size spectrum of the particles was solved using a nodal method based on the modification of a sectional method. In the calculation, the collision frequency function for the entire regime, which is derived by using the concept of collision volume and general enhancement function, was applied. The self-preserving size distribution for the entire regime is compared with the ones for the free-molecular or continuum regimes for each variation of the parameters.

파랑중 2차원 부유체 운동해석을 위한 입자법 시뮬레이션 (Particle Simulation for Motion of 2-D Floating Body in Waves)

  • 박종천;이병혁;정성준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.630-633
    • /
    • 2008
  • A particle method has been developed for analyzing the motion of 2-D floating body in waves. The particle method is based on the MPS(Moving Particle Semi-implicit) method suggested by Koshizuka et al. (1996), and the flow motion coupled with the motion of floating body can be simulated. The wavemaker and wave absorber are installed at the inflow and outflow boundaries in a computational domain, respectively. The motion characteristics of a floating body is investigated numerically under the various computational conditions.

  • PDF

Splitting method for the combined formulation of fluid-particle problem

  • Choi, Hyung-Gwon;Yoo, Jung-Yul;Jeoseph, D.D.
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.709-714
    • /
    • 2000
  • A splitting method for the direct numerical simulation of solid-liquid mixtures is presented, where a symmetric pressure equation is newly proposed. Through numerical experiment, it is found that the newly proposed splitting method works well with a matrix-free formulation fer some bench mark problems avoiding an erroneous pressure field which appears when using the conventional pressure equation of a splitting method. When deriving a typical pressure equation of a splitting method, the motion of a solid particle has to be approximated by the 'intermediate velocity' instead of treating it as unknowns since it is necessary as a boundary condition. Therefore, the motion of a solid particle is treated in such an explicit way that a particle moves by the known form drag (pressure drag) that is calculated from the pressure equation in the previous step. From the numerical experiment, it was shown that this method gives an erroneous pressure field even for the very small time step size as a particle velocity increases. In this paper, coupling the unknowns of particle velocities in the pressure equation is proposed, where the resulting matrix is reduced to the symmetric one by applying the projector of the combined formulation. It has been tested over some bench mark problems and gives reasonable pressure fields.

  • PDF

단일입자 질량분석기를 애용한 서브마이크론 입자의 특성화(I) - 입자의 크기와 질량분광신호의 비선형성 - (Characterization of submicron Particles Using a Single Particle Mass Spectrometer(I) - Non - Linear Correlation Between Particle Size and Mass Spectra Signals -)

  • ;이동근
    • 대한기계학회논문집B
    • /
    • 제29권4호
    • /
    • pp.453-459
    • /
    • 2005
  • In this paper, we are proposing a robust tool which is capable of measuring the size and elemental composition of submicron particles from twenty to several hundreds nanometers at the same time, i.e., named Single Particle Mass Spectrometer (SPMS). The home-made SPMS employs a laser ablation/multi-photon ionization method to tear a nanoparticle into the constituent elemental ions. One thing different from the conventional Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) is the power of the ionization laser. Much strong laser used in this work makes it possible to generate elemental ions rather than molecular ions from a nanoparticle. Also the use of high power laser may guarantee a complete ionization of a particle, which was confirmed by the existence of multiple charged ions. If a particle is evaporated/ionized completely and detected through electric field-free TOF tube without any loss, we can extract the original particle volume from the measured total ion numbers. Collecting a number of particles mass spectra, we get a database of size and elemental composition of nanoparticles, with which we may take a took into any kinds of chemical reaction occurring at nanoscale. Several issues related to size estimation by SPMS will be discussed.

Effect of Particle Size on the Dielectric and Piezoelectric Properties of 0.95(K0.5Na0.5)NbO3-0.05BaTiO3 Lead-free Piezoelectric Ceramics

  • Bae, Seon-Gi;Shin, Hyea-Gyiung;Chung, Kwang-Hyun;Yoo, Ju-Hyun;Im, In-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권4호
    • /
    • pp.179-182
    • /
    • 2015
  • The particle sizes of 0.95(K0.5Na0.5)NbO3-0.05BaTiO3 powder were controlled by secondary milling time after calcination. The average particle sizes, Dmean, of 0.95(K0.5Na0.5)NbO3-0.05BaTiO3 powders were critically changed from 14.31 μm to 0.91 μm by secondary milling time. The dielectric and piezoelectric properties of 0.95(K0.5Na0.5)NbO3-0.05BaTiO3 ceramics depended on the particle sizes of powders after calcination and the secondary milling process. As secondary milling times after calcination were increased to more than 48 hr, the dielectric and piezoelectric properties of 0.95(K0.5Na0.5)NbO3-0.05BaTiO3 ceramics were deteriorated.