Browse > Article
http://dx.doi.org/10.4313/TEEM.2015.16.4.179

Effect of Particle Size on the Dielectric and Piezoelectric Properties of 0.95(K0.5Na0.5)NbO3-0.05BaTiO3 Lead-free Piezoelectric Ceramics  

Bae, Seon-Gi (Department of Electrical Engineering, University of)
Shin, Hyea-Gyiung (Department of Electrical Engineering, University of)
Chung, Kwang-Hyun (Kyungwon Industry Co., Ltd.)
Yoo, Ju-Hyun (Department of Electrical Engineering, Semyung University)
Im, In-Ho (Department of Electrical Engineering, Shinansan University)
Publication Information
Transactions on Electrical and Electronic Materials / v.16, no.4, 2015 , pp. 179-182 More about this Journal
Abstract
The particle sizes of 0.95(K0.5Na0.5)NbO3-0.05BaTiO3 powder were controlled by secondary milling time after calcination. The average particle sizes, Dmean, of 0.95(K0.5Na0.5)NbO3-0.05BaTiO3 powders were critically changed from 14.31 μm to 0.91 μm by secondary milling time. The dielectric and piezoelectric properties of 0.95(K0.5Na0.5)NbO3-0.05BaTiO3 ceramics depended on the particle sizes of powders after calcination and the secondary milling process. As secondary milling times after calcination were increased to more than 48 hr, the dielectric and piezoelectric properties of 0.95(K0.5Na0.5)NbO3-0.05BaTiO3 ceramics were deteriorated.
Keywords
(K0.5Na0.5)NbO3-BaTiO3; Particle sizes; Secondary milling time; Dielectric; Lead-free piezoelectric;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 J. H. Ahn, J. H. Lee, S. H. Hong, N. M. Hwang, and D. Y. Kim, J. Am. Ceram. Soc., 86, 1421 (2003). [DOI: http://dx.doi.org/10.1111/j.1151-2916.2003.tb03486.x]   DOI
2 G. A. Samara, Phys. Rev., 151, 378 (1966). [DOI: http://dx.doi.org/10.1103/PhysRev.151.378]   DOI
3 Y. H. Jeong, J. H. Yoo, S. H. Lee, and J. I. Hong, Sensor and Actuators A, 135, 215 (2007). [DOI: http://dx.doi.org/10.10.16/j.sna.2006.06.073]   DOI
4 C. Fujioka, R. Aoyama, H. Takeda, and S. Okamura, J. Eur. Ceram. Soc., 25, 2723 (2005). [DOI: http://dx.doi.org/10.1016/j.jeurceramsoc.2005.03.129]   DOI
5 R. J. Xie, Y. Akimune, R. Wang, N. Hirisaki, and T. Nishimura, Jpn. J. Appl. Phys., 42, 7404 (2003). [DOI: http://dx.doi.org/10.1143/JJAP.42.7404]   DOI
6 I. H. Im and K. H. Chung, J. Nanosci. Nanotechnol., 14, 8920 (2014). [DOI: http://dx.doi.org/10.1166/jnn.2014.10066]   DOI
7 R. Z. Zuo, X. S. Fang, and C. Ye, Appl. Phys. Lett., 90, 092904 (2007). [DOI: http://dx.doi.org/10.1063/1.2710768]   DOI
8 S. G. Bae, H. G. Shin, E. Y. Sohn, and I. H. Im, Trans. Electr. Electron. Mater., 14, 78 (2013). [DOI: http://dx.doi. org/10.4313/TEEM.2013.10.2.78]   DOI
9 Y. Saito, H. Takao, T. Tari, T. Nonoyama, K. Takatori, T. Homma, and T. Nagaya, Nature, 432, 84 (2004). [DOI: http://dx.doi.org/10.1038/nature03028]   DOI
10 S. H. Lee, K. S. Lee, J. H. Yoo, Y. H. Jeong, and H. S. Yoon, Trans. Electr. Electron. Mater., 12, 72 (2011). [DOI: http://dx.doi.org/10.4313/ TEEM. 2011.12.2.72]   DOI
11 X. Pang, J. Qiu, K. Zhu, and J. Du, Ceramics Int., 38, 2521 (2012). [DOI: http://dx.doi.org/10.1016/j.ceramint.2011.11.022]   DOI
12 P. Zhao, B. P. Zhang, R. Tu, and T. Goto, J. Am. Ceram. Soc., 91, 3078 (2008). [DOI: http://dx.doi.org/10.1111/j.1551-2916.2008.02518.x]   DOI