• 제목/요약/키워드: Particle-free

검색결과 608건 처리시간 0.029초

초음파에너지가 도입된 유화중합공정에서 Polystyrene Latex의 분산도 및 입자분포 특성 (Polydispersity and Particle Size Distribution of Polystyrene Latex Prepared by Ultrasound Induced Emulsion Polymerization)

  • 김원일;홍인권
    • Elastomers and Composites
    • /
    • 제33권2호
    • /
    • pp.110-116
    • /
    • 1998
  • A new technology was introduced to the emulsion polymerization. It is the ultrasonic activation method which replaced a chemical initiator and the environmentally benign process. In this study, free radicals were produced by a pulse type ultrasound energy irradiation, then polystyrene latex was polymerized without chemical initiator. With ultrasonic energy density, the degree of polymerization, average molecular weight, and particle size were increased, but the polydispersity index for the molecular weight and the particle size were decreased. The optimum condition of emulsifier concentration and temperature was found to be 1.0 wt.% SDS and $40^{\circ}C$, respectively. As a result, the emulsion polymerization process without chemical initiator was proved to be comparable to common latex properties such as average molecular weight, molecular weight distribution, particle size, etc.

  • PDF

Chemical Sensors Based on Distributed Bragg Reflector Porous Silicon Smart Particles

  • Sohn, Honglae
    • 통합자연과학논문집
    • /
    • 제8권1호
    • /
    • pp.67-74
    • /
    • 2015
  • Sensing characteristics for porous smart particle based on DBR smart particles were reported. Optically encoded porous silicon smart particles were successfully fabricated from the free-standing porous silicon thin films using ultrasono-method. DBR PSi was prepared by an electrochemical etch of heavily doped $p^{++}$-type silicon wafer. DBR PSi was prepared by using a periodic pseudo-square wave current. The surface-modified DBR PSi was prepared by either thermal oxidation or thermal hydrosilylation. Free-standing DBR PSi films were generated by lift-off from the silicon wafer substrate using an electropolishing current. Free-standing DBR PSi films were ultrasonicated to create DBR-structured porous smart particles. Three different surface-modified DBR smart particles have been prepared and used for sensing volatile organic vapors. For different types of surface-modified DBR smart particles, the shift of reflectivity mainly depends on the vapor pressure of analyte even though the surfaces of DBR smart particles are different. However huge difference in the shift of reflectivity depending on the different types of surface-modified DBR smart particles was obtained when the vapor pressures are quite similar which demonstrate a possible sensing application to specify the volatile organic vapors.

The Flow Field of Undershot Cross-Flow Water Turbines Based on PIV Measurements and Numerical Analysis

  • Nishi, Yasuyuki;Inagaki, Terumi;Li, Yanrong;Omiya, Ryota;Hatano, Kentaro
    • International Journal of Fluid Machinery and Systems
    • /
    • 제7권4호
    • /
    • pp.174-182
    • /
    • 2014
  • The ultimate objective of this study is to develop a water turbine appropriate for low-head open channels to effectively utilize the unused hydropower energy of rivers and agricultural waterways. The application of a cross-flow runner to open channels as an undershot water turbine has been considered and, to this end, a significant simplification was attained by removing the turbine casing. However, the flow field of an undershot cross-flow water turbine possesses free surfaces, and, as a result, the water depth around the runner changes with variation in the rotational speed such that the flow field itself is significantly altered. Thus, clear understanding of the flow fields observed with free surfaces to improve the performance of this turbine is necessary. In this study, the performance of this turbine and the flow field were evaluated through experiments and numerical analysis. The particle image velocimetry technique was used for flow measurements. The experimental results reflecting the performance of this turbine and the flow field were consistent with numerical analysis. In addition, the flow fields at the inlet and outlet regions at the first and second stages of this water turbine were clarified.

Hybrid Approach-Based Sparse Gaussian Kernel Model for Vehicle State Determination during Outage-Free and Complete-Outage GPS Periods

  • Havyarimana, Vincent;Xiao, Zhu;Wang, Dong
    • ETRI Journal
    • /
    • 제38권3호
    • /
    • pp.579-588
    • /
    • 2016
  • To improve the ability to determine a vehicle's movement information even in a challenging environment, a hybrid approach called non-Gaussian square rootunscented particle filtering (nGSR-UPF) is presented. This approach combines a square root-unscented Kalman filter (SR-UKF) and a particle filter (PF) to determinate the vehicle state where measurement noises are taken as a finite Gaussian kernel mixture and are approximated using a sparse Gaussian kernel density estimation method. During an outage-free GPS period, the updated mean and covariance, computed using SR-UKF, are estimated based on a GPS observation update. During a complete GPS outage, nGSR-UPF operates in prediction mode. Indeed, because the inertial sensors used suffer from a large drift in this case, SR-UKF-based importance density is then responsible for shifting the weighted particles toward the high-likelihood regions to improve the accuracy of the vehicle state. The proposed method is compared with some existing estimation methods and the experiment results prove that nGSR-UPF is the most accurate during both outage-free and complete-outage GPS periods.

PMDV-hop: An effective range-free 3D localization scheme based on the particle swarm optimization in wireless sensor network

  • Wang, Wenjuan;Yang, Yuwang;Wang, Lei;Lu, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권1호
    • /
    • pp.61-80
    • /
    • 2018
  • Location information of individual nodes is important in the implementation of necessary network functions. While extensive studies focus on localization techniques in 2D space, few approaches have been proposed for 3D positioning, which brings the location closer to the reality with more complex calculation consumptions for high accuracy. In this paper, an effective range-free localization scheme is proposed for 3D space localization, and the sensitivity of parameters is evaluated. Firstly, we present an improved algorithm (MDV-Hop), that the average distance per hop of the anchor nodes is calculated by root-mean-square error (RMSE), and is dynamically corrected in groups with the weighted RMSE based on group hops. For more improvement in accuracy, we expand particle swarm optimization (PSO) of intelligent optimization algorithms to MDV-Hop localization algorithm, called PMDV-hop, in which the parameters (inertia weight and trust coefficient) in PSO are calculated dynamically. Secondly, the effect of various localization parameters affecting the PMDV-hop performance is also present. The simulation results show that PMDV-hop performs better in positioning accuracy with limited energy.

분말상 탄닌수지로 제조한 PB의 물리.기계적 특성 (Physical and Mechanical Properties of Particleboard made with Powdered Tannin Adhesives)

  • 강석구;이화형
    • 한국가구학회지
    • /
    • 제14권2호
    • /
    • pp.1-12
    • /
    • 2003
  • This study was carried out to determine the mechanical and physical properties of particle boards glued with condensed tannin (Wattle Tannin) powder that was single-molecule phenolic compounds like powdered phenolic resin. Our findings are; 1) It is necessary to spray water on the chip surfaces for effective application of powdered -form tannin resin. It shows that the best and optimum mat moisture increase is 14% of water spray on the surface of chips for developing PB properties. 2) In general, for both liquid and powdered tannin adhesives, their physical and mechanical properties has been proportional to the increase of resin level. But, the most efficient addition ratio is 16% of resin on dry basis. Specially, it is found that the resin level influences on the amount of free formaldehyde emission. The higher the resin level is, the lower the emission is. These phenomena seem to result from the increase of hexamine or formaline in the adhesives used as a hardener, that reduce the free-formaldehyde amount by reaction of tannin of poly-molecule and water. 3) The optimum condition for manufacturing PBs is the condition of hexamine of 5% and formaline of 6% in mechanical and physical properties. Hexamine is superior to formaline in mechanical and physical properties along with the control of the free formaldehyde emission amount. The result of NaOH's addition is insignificant in all experiments of both mechanical and physical properties.

  • PDF

댐 붕괴에 의한 토양 거동 시뮬레이션 (Simulation of Soil Behavior due to Dam Break Using Moving Particle Simulation)

  • 김경성;박동우
    • 한국해양공학회지
    • /
    • 제31권6호
    • /
    • pp.388-396
    • /
    • 2017
  • A Lagrangian approach based computational fluid dynamics (CFD) was used to simulate large and/or sharp deformations and fragmentations of interfaces, including free surfaces, through tracing each particle with physical quantities. According to the concept of the particle-based CFD method, it is possible to apply it to both fluid particles and solid particles such as sand, gravel, and rock. However, the presence of more than two different phases in the same domain can make it complicated to calculate the interaction between different phases. In order to solve multiphase problems, particle interaction models for multiphase problems, including surface tension, buoyancy-correction, and interface boundary condition models, were newly adopted into the moving particle semi-implicit (MPS) method. The newly developed MPS method was used to simulate a typical validation problem involving dam breaking. Because the soil and other particles, excluding the water, may have different viscosities, various viscosity coefficients were applied in the simulations for validation. The newly developed and validated MPS method was used to simulate the mobile beds induced by broken dam flows. The effects of the viscosity on soil particles were also investigated.

외피유체 없이 입자 빔의 발생: 유세포 분류기 응용 (Generation of sheath-free particle beam: application to micro-flow cytometry)

  • 김영원;유정열
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.581-584
    • /
    • 2008
  • A generation of a particle beam is the key technique in a flow cytometry that measures the fluorescence and light scattering of individual cell and other particulate or molecular analytes in biomedical research. Recent methods performing this function require a laborious and time-consuming assembly. In the present work, we propose a novel device for the generation of an axisymmetrical focusing beam of microparticles (3-D focusing) in a single capillary without sheath flows. This work uses the concept that the particles migrate toward the centerline of the channel when they lag behind the parabolic velocity profile. Particle focusing of spherical particles was successfully made with a beam diameter of about 10 ${\mu}$m. Proposed device provides crucial solutions for simple and innovative 3-D particle focusing method for the applications to the MEMS-based micro-flow cytometry. We believe that this device can be utilized in a wide variety of applications, such as biomedical/ biochemical engineering.

  • PDF

초음파 신호와 부분방전 신호의 패턴에 의한 GIS내 파티클 위치 추정 (Locating Particle by Ultrasonic Signal and Partial Discharge Signal Pattern in GIS)

  • 곽희로;이동준
    • 조명전기설비학회논문지
    • /
    • 제14권5호
    • /
    • pp.12-18
    • /
    • 2000
  • 본 연구에서는 Gl5내 파티클의 각종 위치에서 발생하는 초음파 신호와 부분방전 신호의 페턴을 비교 분석하였다. 파티클 위치에 따른 초음파 신호와 부분방전 신호 패턴의 특칭은 전극 부착시 양의 반주기에서 큰 초음파 신호와 큰 부분방전 신호가 주기적으로 나타났으며, 외함 부착시에는 음의 반주기에서 큰 초음파 신호와 큰 부분 방전 신호기 주기적으로 나타났다. 그리고 스페이서 부착시에는 양, 음의 반주기에서 초음파 신호와 큰 부분방전 신호가 주기적으로 나타나고 있다. 또한 자유운동시에는 충돌에 의한 초음파 신호와 큰 부분방전 신호가 비주기적으로 나타났다. 이상의 결과로부터 초음파 신호와 부분방전 신호 패턴을 비교, 분석히변 GIS 내부에 존재하는 파티를의 위치 추정이 가능함을 알 수 있었다.

  • PDF

상압 공기역학적 렌즈의 입자 관성집속 모델 (Model for the Inertial Focusing of Particles Using an Atmospheric Aerodynamic Lens)

  • 이진원;이민영
    • 대한기계학회논문집B
    • /
    • 제25권3호
    • /
    • pp.315-321
    • /
    • 2001
  • Aerodynamic lenses are widely used in generating particle beams of high density and small diameter, but analytical or modeling studies are limited only in the free molecular regime. In this study, it is shown that generating particle beam is also possible in atmospheric pressure range, and the mechanism of generating particle beam using an orifice is analysed into three different parts : fluid dynamic contraction, diffusional defocusing, and inertial focusing. In laminar flow conditions, the diffusional defocusing effect can be neglected, and the effects of inertial focusing can be expressed in terms of the orifice size and Stokes number. Numerical experiments are done for two different orifices, d/D=1/5 and 1/10 and particle diameter d(sub)p=1-10 ㎛. The results for two different orifices can be made into a single curve when a modified Stokes number is used. The inertial focusing effect diminishes when the modified Stokes number becomes smaller than 10(sup)-2.