• 제목/요약/키워드: Particle-based fluids

검색결과 67건 처리시간 0.025초

Velocity measurements in complex flows of non-Newtonian fluids

  • Muller, Susan J.
    • Korea-Australia Rheology Journal
    • /
    • 제14권3호
    • /
    • pp.93-105
    • /
    • 2002
  • Experimental methods for making quantitative measurements of velocity fields in non-Newtonian fluids are reviewed. Techniques based on light scattering spectroscopy - laser Doppler velocimetry and homodyne light scattering spectroscopy, techniques based on imaging the displacement of markers - including particle image velocimetry and molecular tagging velocimetry, and techniques based on nuclear magnetic resonance imaging are discussed. The special advantages and disadvantages of each method are summarized, and their applications to non-Newtonian flows are briefly reviewed. Example data from each technique are also included.

화약제조 공정의 초임계 유체 응용 (Application of Supercritical Fluid in Energetic Materials Processes)

  • 송은석;김화용;김현수;이윤우
    • 한국군사과학기술학회지
    • /
    • 제9권3호
    • /
    • pp.77-87
    • /
    • 2006
  • Micro- or nano-size particles are required to improve the combustion efficiency and stability in the case of solid explosives and propellants. The micro-structural properties of an energetic material strongly influence the combustion and explosion behavior. However, the traditional size reduction techniques, including milling, are not suitable for production of ultra-fine size particles. As an alternative to the traditional techniques, various re-crystallization processes based on supercritical fluids have recently been proposed. Supercritical fluids are fluids at temperatures and pressures above their critical point. In principle, they do not give problems of solvent contamination as they are completely released from the solute when the decompression occurs. Rapid Expansion Supercritical Solutions(RESS) and Supercritical Anti-Solvent Process(GAS/SAS) are representatives of a nano-size particle formation process of energetic materials using supercritical fluids. In this work, various fine particle formation processes using supercritical fluids are discussed and the results are presented.

Influence Factor on Magnetization Property of Carbonyl Iron-based Magnetorheological Fluids

  • Wang, Daoming;Zi, Bin;Qian, Sen;Qian, Jun;Zeng, Yishan
    • Journal of Magnetics
    • /
    • 제21권4호
    • /
    • pp.622-628
    • /
    • 2016
  • Magnetization property is a critical factor for magnetorheological fluids (MRFs) to achieve the liquid-solid transition. The main focus of this study is on exploring the influence factors on magnetization properties of MRFs. In this paper, a theoretical analysis is performed to discuss the magnetization characteristics of MRFs firstly. Then, a method for the preparation of carbonyl iron-based MRFs is illustrated and five MRFs samples with various material parameters are prepared. It is succeeded by a series of experiments on testing the hysteresis loop and the magnetization curve of each sample and the influence factors are compared and analyzed. Experimental results indicate that there is basically no hysteresis phenomenon on MRFs which exhibits superparamagnetic behavior at room temperature. A surfactant coating on magnetic particles can slightly improve the MRFs magnetization. Additionally, the magnetic susceptibility and the saturation magnetization both increase with the particle concentration, whereas the influence of particle diameter is relatively very small. Moreover, as the temperature increases, the magnetization decreases and the declining rate accelerates gradually.

실리카계 ER유체의 구성요소에 따른 마모 특성 (Wear Characteristics of Silica-Based ER Fluids with Different Compositions)

  • 송요찬;최승복;정재천;서문석;이문수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.441-445
    • /
    • 1993
  • This study addresses the wear characteristics of electro-rheological(ER) fluids which are potential application candidates for various hydraulic systems. As the first step, three different ER fluids are composed and subsequently tested to observe field-dependent Bingham behaviors. The pin-on-disc testing method is then adopted herein herein to investigate the wear rate of the ER fluids with various base liquids and particle concentrations. In addition, friction coefficients for the ER fluids are evaluated with respect to the normal force.

  • PDF

병렬로 배열된 두 개의 원형 실린더 유동에서 입자의 분산과 부착 해석 (SIMULATION OF PARTICLE DISPERSION AND DEPOSITION IN FLOW AROUND TWO CIRCULAR CYLINDERS IN A SIDE-BY-SIDE ARRANGEMENT)

  • 황동준;김동주
    • 한국전산유체공학회지
    • /
    • 제21권2호
    • /
    • pp.81-89
    • /
    • 2016
  • Numerical simulations are carried out for the fluid flow and particle transport around two nearby circular cylinders in a side-by-side arrangement. The present study aims to understand the effects of the particle Stokes number and the spacing between two cylinders on particle dispersion and deposition characteristics. Simulations are based on an Eulerian-Lagrangian approach where the motion of particles is calculated by a Lagrangian approach based on one-way coupling. Results show that the flow structure is very different depending on the cylinder spacing, eventually affecting the overall pattern of particle dispersion significantly. It is also found that particles with smaller Stokes number tend to be distributed more uniformly in the wake of two cylinders, being located even inside the vortex cores. Meanwhile, particle deposition is analyzed in terms of the deposition efficiency and deposition location. The deposition efficiency of particles strongly depends on the Stokes number, whereas it is slightly affected by the cylinder spacing. The deposition location gets wider as the Stokes number increases, and it becomes asymmetric about the center of each cylinder as the cylinders get close.

Hybrid Particle-Mesh 방법에 적합한 다중영역 방법 (A MULTI-DOMAIN APPROACH FOR A HYBRID PARTICLE-MESH METHOD)

  • 이승재;서정천
    • 한국전산유체공학회지
    • /
    • 제19권2호
    • /
    • pp.72-78
    • /
    • 2014
  • A hybrid particle-mesh method as the combination between the Vortex-In-Cell (VIC) method and penalization method has been achieved in recent years. The VIC method, which is based on the vorticity-velocity formulation, offers particle-mesh algorithms to numerically simulate flows past a solid body. The penalization method is used to enforce boundary conditions at a body surface with a decoupling between body boundaries and computational grids. The main advantage of the hybrid particle-mesh method is an efficient implementation for solid boundaries of arbitrary complexity on Cartesian grids. However, a numerical simulation of flows in large domains is still not too easy. In this study, a multi-domain approach is thus proposed to further reduce computation cost and easily implement it. We validate the implementation by numerical simulations of an incompressible viscous flow around an impulsively started circular cylinder.

전산유체역학을 이용한 실시간 유체 애니메이션 기술 (Real-time Flow Animation Techniques Using Computational Fluid Dynamics)

  • 강문구
    • 한국가시화정보학회지
    • /
    • 제2권2호
    • /
    • pp.8-15
    • /
    • 2004
  • With all the recent progresses in computer hardware and software technology, the animation of fluids in real-time is still among the most challenging issues of computer graphics. The fluid animation is carried out in two steps - the physical simulation of fluids immediately followed by the visual rendering. The physical simulation is usually accomplished by numerical methods utilizing the particle dynamics equations as well as the fluid mechanics based on the Navier-Stokes equations. Particle dynamics method is usually fast in calculation, but the resulting fluid motion is conditionally unrealistic. The methods using Navier-Stokes equation, on the contrary, yield lifelike fluid motion when properly conditioned, yet the complexity of calculation restrains this method from being used in real-time applications. This article presents a rapid fluid animation method by using the continuum-based fluid mechanics and the enhanced particle dynamics equations. For real-time rendering, pre-integrated volume rendering technique was employed. The proposed method can create realistic fluid effects that can interact with the viewer in action, to be used in computer games, performances, installation arts, virtual reality and many similar multimedia applications.

  • PDF

입자분산계 ER유체의 빙햄특성 고찰 (A Study on Bingham Characteristics of Particle Dispersive Electro-Rheological Fluid)

  • 장성철;이선의;김태형;박종근;염만오
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2000년도 추계학술대회 논문집
    • /
    • pp.178-183
    • /
    • 2000
  • Electrorheological(ER) effect on the dispersive system of polarizable fine powder/dielectric oil has been investigated. The electrical and rheological properties of zeolite and starch based ER fluid were reported. The ER fluids were constructed by mixing zeolite and starch power with two different dielectric oils. Yield stress of the fluids were measured on the couette cell type rheometer as a function of electric fields, particle concetrations, and temperatures. The electric field is applied by high voltage DC power supply. The outer cup is connected to positive electrode(+) and the bob becomes ground(-). And the temperatures the viscosity(or shear stress) versus shear rates were measured. In this experiment shear rates were increased from 0 to $200s^{-1}$ in 2 minutes.

  • PDF

파손된 탱크의 기름 유출량 산정을 위한 2차원 입자법 시뮬레이션 (Prediction of Oil Amount Leaked from Damaged Tank Using 2-dimensional Particle Simulation)

  • 남정우;황성철;박종천
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.278-285
    • /
    • 2011
  • In the present study, the numerical prediction of the oil amount leaked from the hole of a damaged tank is investigated using the improved MPS (Moving Particle Semi-implicit) method, which was originally proposed by Koshizuka and Oka (1996) for incompressible flow. The governing equations, which consist of the continuity and Navier-Stokes equations, are solved by Lagrangian moving particles, and all terms expressed by differential operators should be replaced by the particle interaction models based on a Kernel function. The simulation results are validated though the comparison with the analytic solution based on Torricelli's equilibrium relation. Furthermore, a series of numerical simulations under the various conditions are performed in order to estimate more accurately the initial amount of leaked oil.

  • PDF

Parallel Hybrid Particle-Continuum (DSMC-NS) Flow Simulations Using 3-D Unstructured Mesh

  • Wu J.S.;Lian Y.Y.;Cheng G.;Chen Y.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 PARALLEL CFD 2006
    • /
    • pp.27-34
    • /
    • 2006
  • In this paper, a recently proposed parallel hybrid particle-continuum (DSMC-NS) scheme employing 3D unstructured grid for solving steady-state gas flows involving continuum and rarefied regions is described [1]. Substitution of a density-based NS solver to a pressure-based one that greatly enhances the capability of the proposed hybrid scheme and several practical experiences of implementation learned from the development and verifications are highlighted. At the end, we present some simulation results of a realistic RCS nozzle plume, which is considered very challenging using either a continuum or particle solver alone, to demonstrate the capability of the proposed hybrid DSMC-NS method.

  • PDF