DOI QR코드

DOI QR Code

Influence Factor on Magnetization Property of Carbonyl Iron-based Magnetorheological Fluids

  • Wang, Daoming (School of Mechanical Engineering, Hefei University of Technology) ;
  • Zi, Bin (School of Mechanical Engineering, Hefei University of Technology) ;
  • Qian, Sen (School of Mechanical Engineering, Hefei University of Technology) ;
  • Qian, Jun (School of Mechanical Engineering, Hefei University of Technology) ;
  • Zeng, Yishan (School of Mechanical Engineering, Hefei University of Technology)
  • Received : 2016.08.07
  • Accepted : 2016.11.14
  • Published : 2016.12.31

Abstract

Magnetization property is a critical factor for magnetorheological fluids (MRFs) to achieve the liquid-solid transition. The main focus of this study is on exploring the influence factors on magnetization properties of MRFs. In this paper, a theoretical analysis is performed to discuss the magnetization characteristics of MRFs firstly. Then, a method for the preparation of carbonyl iron-based MRFs is illustrated and five MRFs samples with various material parameters are prepared. It is succeeded by a series of experiments on testing the hysteresis loop and the magnetization curve of each sample and the influence factors are compared and analyzed. Experimental results indicate that there is basically no hysteresis phenomenon on MRFs which exhibits superparamagnetic behavior at room temperature. A surfactant coating on magnetic particles can slightly improve the MRFs magnetization. Additionally, the magnetic susceptibility and the saturation magnetization both increase with the particle concentration, whereas the influence of particle diameter is relatively very small. Moreover, as the temperature increases, the magnetization decreases and the declining rate accelerates gradually.

Keywords

References

  1. Y. H. Huang, Y. H. Jiang, X. B. Yang, and R. Z. Xu, J. Magn. 20, 317 (2015). https://doi.org/10.4283/JMAG.2015.20.3.317
  2. D. Wang and Y. Hou, J. Intel. Mat. Syst. Str., 24, 640 (2013). https://doi.org/10.1177/1045389X12470305
  3. S. G. Sherman and N. M. Wereley, J. Appl. Phys. 115, 17 (2014).
  4. D. Wang, B. Zi, Y. Zeng, Y. Hou, and Q. Meng, J. Mater. Sci. 49, 24 (2014).
  5. S. Rahimi and D. Weihs, J. Magn. 21, 2 (2016).
  6. M. Ashtiani, S. H. Hashemabadi, and A. Ghaffari, J. Magn. Magn. Mater. 374, (2015).
  7. D. M. Wang, Y. F. Hou, and Z. Z. Tian, Smart Mater. Struct. 22, 2 (2013).
  8. X. Wu, X. Xiao, Z. Tian, F. Chen, and J. Wang, J. Magn. 21, 2 (2016).
  9. J. de Vicente, D. J. Klingenberg, and R. Hidalgo-Alvarez, Soft Matter. 7, 8 (2011). https://doi.org/10.2324/ejsm.7.8
  10. K. P. Hong, Y. K. Cho, B. C. Shin, M. W. Cho, S. B. Choi, S. W. Cho, and J. J. Jae, Mater. Manuf. Process 27, 10 (2012). https://doi.org/10.1080/10426914.2010.544812
  11. H. H. Sim, S. H. Kwon, and H. J. Choi, Colloid. Polym. Sci. 291, 4 (2013).
  12. S. Y. Kim, S. H. Kwon, Y. D. Liu, J. S. Lee, C. Y. You, and H. J. Choi, J. Mater. Sci. 49, 3 (2014).
  13. G. McLaughlin, W. Hu, and N. M. Wereley, J. Appl. Phys. 115, 17 (2014).
  14. A. Milecki and M. Hauke, Mech. Syst. Signal. Pr. 28, (2012).
  15. X. B. Yang, Y. H. Jiang, Y. H. Huang, R. Z. Xu, H. G. Piao, G. M. Jia, and X. Y. Tan, J. Magn. 19, 345 (2014). https://doi.org/10.4283/JMAG.2014.19.4.345
  16. A. S. Shafer and M. R. Kermani, IEEE-ASME T. Mech. 16, 6 (2011).
  17. D. Wang, B. Zi, Y. Zeng, F. Xie, and Y. Hou, Smart Mater. Struct. 24, 5 (2015).
  18. D. Wang, Y. Hou, Q. Meng, and Z. Tian, Smart Mater. Struct., 22, 8 (2013).
  19. O. Erol, B. Gonenc, D. Senkal, S. Alkan, and H. Gurocak, J. Intell. Mater. Syst. Struct. 23, 4 (2012).
  20. A. K. Singh, S. Jha, and P. M. Pandey, Mater. Manuf. Process 27, 4 (2012).
  21. M. Niranjan, S. Jha, and R. K. Kotnala, Mater. Manuf. Process 29, 4 (2014).
  22. I. Bica, Phys. Rev. B 371, 1 (2006).
  23. Z. Tian, Y. Hou, and N. Wang, J. Funct. Mater. 42, 11 (2011).
  24. A. Gomez-Ramirez, M. T. Lopez-Lopez, F. Gonzalez-Caballero, and J. D. G. Duran, Rheol. Acta. 51, 9 (2012).
  25. A. Wiehe, C. Kieburg, and J. Maas, J. Phys.: Conference Series 412, 1 (2013).
  26. G. Yildirim and S. Genc, Smart Mater. Struct. 22, 8 (2013).
  27. G. Routhier and Y. St-Amant, International Workshop on Smart Materials, Structures & NDT in Aerospace, Montreal, Canada, 2-4 November (2011).
  28. C. Sarkar and H. Hirani, Smart Mater. Struct. 22, 11 (2013).
  29. X. Liu, L. Wang, H. Lu, Q. Chen, and Z. Wang, Mater. Manuf. Process 30, 2 (2015).
  30. D. Wang, B. Zi, Y. Zeng, F. Xie, and Y. Hou, P. I. Mech. Eng. C-J Mec., doi: 10.1177/0954406215621099 (2015).
  31. X. Yao, Z. Chen, H. Qin, Q. Yu, and C. Li, Optoelectron. Adv. Mat. 10, 3-4 (2016).
  32. M. M. Maiorov and A. Cebers, Magnetohydrodynamics 19, 4 (1983).