• Title/Summary/Keyword: Particle velocity

Search Result 1,620, Processing Time 0.025 seconds

Measurements of Three-Dimensional Droplet Velocities Using the Holographic System (홀로그래피를 이용한 분무 액적의 3차원 속도 측정)

  • Oh, Dai-Jin;Choo, Yeon-Jun;Kang, Bo-Seon
    • Journal of ILASS-Korea
    • /
    • v.6 no.4
    • /
    • pp.31-38
    • /
    • 2001
  • The Holographic Particle Velocimetry system can be a promising optical tool for the measurements of three dimensional particle velocities. In this study, the holographic panicle velocimetry system was used to measure the sizes and velocities of droplets formed by a commercial full cone spray nozzle. Uncertainty analysis was performed to identify the sources of all relevant errors and to evaluate their magnitude. The droplet velocities ranged from 10.3 to 13.3 m/s with average uncertainty of ${\pm}1.6m/s$, which is ${\pm}14%$ of the mean droplet velocity. Compared with relatively small uncertainties of velocity components in the normal direction to the optical axis, the uncertainty of the optical axis component is ${\pm}3.6m/s$. This is due to the long depth of field of droplet images in the optical axis, which is inherent feature of holographic system using forward-scattering object wave of particles.

  • PDF

NUMERICAL INVESTIGATION ON CAPTURE OF NANOPARTICLES IN ELECTROSTATIC PRECIPITATOR WITHOUT CORONA DISCHARGER (코로나 방전기가 없는 전기집진기의 나노입자 집진에 관한 수치해석)

  • Lee, J.W.;Jang, J.S.;Lee, S.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.103-108
    • /
    • 2010
  • This article presents computational fluid dynamics (CFD) simulations of nanoparticle movements and flow characteristics in laboratory-scale electrostatic precipitator (ESP) without corona discharge, and for simulation, it uses the commercial CFD program(CFD-ACE) including electrostatic theory and Lagrangian-based equation for nanoparticle movement. For validation of CFD results, a simple cylindrical type of ESP is simulated and numerical prediction shows fairly good agreement with the analytical solution. In particular, the present study investigates the effect of particle diameter, inlet flow rate, and applied electric potential on particle collection efficiency and compares the numerical prediction with the experimental data, showing good agreement. It is found that the particle collection efficiency decreases with increasing inlet flow rate because the particle detention time becomes shorter, whereas it decreases with the increase in nanoparticle diameter and with the decrease of applied electric voltage resulting from smaller terminal electrostatic velocity.

  • PDF

An Experiment on the Particle Collection Characteristics in a Packed Wet Scrubber (충진층식 세정집진기의 집진특성 실험)

  • 유경훈;노희환;최은수;김종균
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.4
    • /
    • pp.305-311
    • /
    • 2003
  • DOP aerosol particles with geometric mean diameter of 0.5-3.0 ${\mu}{\textrm}{m}$, geometric standard deviation of 1.1-1.3 and total number concentration of 1,500-8,000 Particles/㎤ were used to determine collection efficiencies of a packed wet scrubber with respect to particle size. The tested operating variables included air velocity and water injection rate. It was shown from the experimental results that the collection efficiencies increased with increasing water injection rate and decreasing air velocity. Meanwhile, as for the particle size variation, all of the collection efficiency curves increased rapidly between 0.57-1.41${\mu}{\textrm}{m}$ for the range of water injection rate above 30 L/min. It was also seen that the collection efficiency of a packed wet scrubber is mainly governed by the mechanism of inertial impaction.

On the Vibration Characteristics and Determination of Site Constants for Surface Blasting (노천굴발파의 진동특성과 입지상수 결정에 관한 연구)

  • 양형식;주재성
    • Explosives and Blasting
    • /
    • v.8 no.4
    • /
    • pp.23-29
    • /
    • 1990
  • Some surface blasting vibration was measured to determine site constants and vibration frequency was analyzed. The results are summarized as follows; 1) Design method to predict particle velocities was introduced using the logarithmic normal distribution characteristics of peak particle velocities. 2) Scaled distance diagram to determine limiting charge was presented. 3) Line fitness between particle velocity and scaled distance didn't depend on dominant component of vibration. Prevail fitness was in the order of transverese, peak, vertical and radial component. 4) Dominant component of particle velocity didn't related to drilling direction. Frequency was lowered as distance enlarged. Duration time of vibration was shortened as charge decreased.

  • PDF

Development of a New 2-Frame Particle Tracking Algorithm Using Match Probability (일치확률방식의 2-프레임 PTV 알고리듬 개발)

  • 백승조;이상준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1741-1748
    • /
    • 1995
  • A new particle tracking algorithm using the concept of match probability between two consequent image frames has been developed to obtain an instantaneous 2-dimensional velocity field. A computer simulation has been carried out to check the performance and usefulness of the developed algorithm by comparing with the conventional 4-frame Particle Tracking Velocimetry(PTV) method. As a result the newly developed algorithm shows very good performance. Although the major part of the developed algorithm is time-consuming iterative updating routine of match probability, computational elapse time to get the resonable results is a very short compared with the 4-frame PTv.Additionally, the present 2-frame PTV algorithm recovers more velocity vectors and has higher dynamic range and lower error ratio compared with the conventional 4-frame PTV.

Lagrangian Investigation of Turbulent Channel Flow (II) - Analysis of Lagrangian Statistics - (난류채널유동의 라그란지안 해석 (II) - 라그란지안 통계분석 -)

  • Choi, Ho-Jong;Lee, Sang-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.867-876
    • /
    • 2003
  • The Lagrangian dispersion of fluid particles in inhomogeneous turbulence is investigated by a direct numerical simulation of turbulent channel flow. Four points Hermite interpolation in the homogeneous direction and Chebyshev polynomials in the inhomogeneous direction is adopted to simulate the fluid particle dispersion. An inhomogeneity of Lagrangian statistics in turbulent boundary layer is investigated by releasing many particles at several different wall-normal locations and tracking those particles. The fluid particle dispersions and Lagrangian structure functions of velocity are scaled by the Kolmogorov similarity. The auto-correlations of velocity and acceleration are shown at the different releasing locations. Effect of initial particle location on the dispersion is analyzed by the probability density function at the several downstreams and time instants.

In-situ Crack Propagation Observation of a Particle Reinforced Polymer Composite Using the Double Cleavage Drilled Compression Specimens

  • Lee Yeon-Soo;Yoon Young-Ki;Jeong Bo-Young;Yoon Hi-Seak
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.310-318
    • /
    • 2006
  • In this study, we investigate the feasibility of in-situ crack propagation by using a double cleavage drilled compression (DCDC) specimen showing a slow crack velocity down to 0.03 mm/s under 0.01 mm/s of displacement control. Finite element analysis predicted that the DCDC specimens would show at least 4.3 fold delayed crack initiation time than conventional tensile fracture specimens under a constant loading speed. Using DCDC specimens, we were able to observe the in-situ crack propagation process in a particle reinforced transparent polymer composite. Our results confirmed that the DCDC specimen would be a good candidate for the in-situ observation of the behavior of particle reinforced composites with slow crack velocity, such as the self-healing process of micro-particle reinforced composites.

An Experiment on Particle Collection Characteristics of a Duct-type Wet Scrubber (덕트형 세정집진기의 입자포집 특성실험)

  • Yoo, Kyung-Hoon;Yeo, Kuk-Hyun;Son, Seung-Woo;Hwang, Kwang-Ho;Jung, Jin-Won;Kim, Yoon-Shin
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1795-1800
    • /
    • 2004
  • DOS and NaCl aerosol particles with geometric mean diameter of $0.1{\sim}3.0{\mu}m$ geometric standard deviation of $1.1{\sim}1.8$ and total number concentration of $450{\sim}400$ $particles/cm^3$ were used to determine collection efficiencies of a duct-type wet scrubber with respect to particle size. The tested operating variables included air velocity and water injection rate. It was shown from the experimental results that the collection efficiencies increased with increasing water injection rate and decreasing air velocity. It was also seen that the collection efficiency of the Duct-type wet scrubber is mainly governed by the mechanism of inertial impaction.

  • PDF

A Study on PTV analysis of AC Electroosmotic Flows in the Microchannel with Coplanar electrodes (마이크로 채널 내 교류 전기 삼투 유동에 대한 PTV해석)

  • Heo, Hyeung-Seok;Kang, Sang-Mo;Suh, Yong-Kweon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.113-116
    • /
    • 2006
  • AC-electroosmosis is one of the electrokinetic forces leading to phenomena peculiar in the microfluidics. This paper shows particle deformation in the microchannel with rectangular electrodes on the bottom wall for the AC-electroosmotic flows. We make a PDMS microchannnel with ITO electrodes To measure velocity distributions of the particles we used a three-dimensional particle tracking velocimetry (micro-PTV) technique this method is Particle tracking by interpolation the diffraction pattern ring diameter variations with the defocusing distances of base particle locations. we induce a function of frequency at the electrode. We find the velocity of particles is the most at the edge of the electrodes and Particles move to side wall or center of the channel for the bottom and middle.

  • PDF

Solid Descending Velocity by Gravity in a Vertical Downcomer (수직관에서 중력에 의한 고체하강속도)

  • Ryu, Ho-Jung;Park, Jaehyeon;Shun, Do-Won;Lee, Seung-Yong
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.522-526
    • /
    • 2012
  • New experimental method to measure solid descending velocity in a vertical downcomer was presented and effects of downcomer diameter and particle properties on descending velocities for Geldart group A, B, and D particle have been measured and investigated. The effect of initial solid inventory on solid descending velocity was negligible. However, solid flow rate, solid circulation rate and solid descending velocity increased as the downcomer diameter increased. Moreover, solid descending velocity increased linearly as the downcomer diameter increased and showed distinguishable trend for Geldart group D particle from Geldart group A and B particles. Empirical correlations of solid descending velocity for Geldart group D and Geldart group A and B particles have been derived based on the measured values. The correlations could predict well the solid descending velocities.