• Title/Summary/Keyword: Particle track reconstruction

Search Result 5, Processing Time 0.021 seconds

Multiple Object Tracking with Color-Based Particle Filter for Intelligent Space (공간지능화를 위한 색상기반 파티클 필터를 이용한 다중물체추적)

  • Jin, Tae-Seok;Hashimoto, Hideki
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.1
    • /
    • pp.21-28
    • /
    • 2007
  • The Intelligent Space(ISpace) provides challenging research fields for surveillance, human-computer interfacing, networked camera conferencing, industrial monitoring or service and training applications. ISpace is the space where many intelligent devices, such as computers and sensors, are distributed. According to the cooperation of many intelligent devices, the environment, it is very important that the system knows the location information to offer the useful services. In order to achieve these goals, we present a method for representing, tracking and human following by fusing distributed multiple vision systems in ISpace, with application to pedestrian tracking in a crowd. And the article presents the integration of color distributions into particle filtering. Particle filters provide a robust tracking framework under ambiguity conditions. We propose to track the moving objects by generating hypotheses not in the image plan but on the top-view reconstruction of the scene. Comparative results on real video sequences show the advantage of our method for multi-object tracking. Also, the method is applied to the intelligent environment and its performance is verified by the experiments.

  • PDF

Multi-Object Tracking using the Color-Based Particle Filter in ISpace with Distributed Sensor Network

  • Jin, Tae-Seok;Hashimoto, Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.46-51
    • /
    • 2005
  • Intelligent Space(ISpace) is the space where many intelligent devices, such as computers and sensors, are distributed. According to the cooperation of many intelligent devices, the environment, it is very important that the system knows the location information to offer the useful services. In order to achieve these goals, we present a method for representing, tracking and human following by fusing distributed multiple vision systems in ISpace, with application to pedestrian tracking in a crowd. And the article presents the integration of color distributions into particle filtering. Particle filters provide a robust tracking framework under ambiguity conditions. We propose to track the moving objects by generating hypotheses not in the image plan but on the top-view reconstruction of the scene. Comparative results on real video sequences show the advantage of our method for multi-object tracking. Simulations are carried out to evaluate the proposed performance. Also, the method is applied to the intelligent environment and its performance is verified by the experiments.

Color Pattern Recognition and Tracking for Multi-Object Tracking in Artificial Intelligence Space (인공지능 공간상의 다중객체 구분을 위한 컬러 패턴 인식과 추적)

  • Tae-Seok Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.2_2
    • /
    • pp.319-324
    • /
    • 2024
  • In this paper, the Artificial Intelligence Space(AI-Space) for human-robot interface is presented, which can enable human-computer interfacing, networked camera conferencing, industrial monitoring, service and training applications. We present a method for representing, tracking, and objects(human, robot, chair) following by fusing distributed multiple vision systems in AI-Space. The article presents the integration of color distributions into particle filtering. Particle filters provide a robust tracking framework under ambiguous conditions. We propose to track the moving objects(human, robot, chair) by generating hypotheses not in the image plane but on the top-view reconstruction of the scene.

Determination of the number of 235U target nuclei in the irregular target using a fission time projection chamber

  • Jiajun Zhang;Jun Xiao;Junjie Sun;Mingzhi Zhang;Taiping Peng;Pu Zheng
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.444-450
    • /
    • 2024
  • Based on multiple measurements of ionization loss, the Time Projection Chamber (TPC) combines strong tracking ability with particle identification ability in a large momentum range, which is an important advantage of TPC detection technology over traditional ionization measurement technology. According to these two characteristics of TPC, applying it to the measurement of fission cross-section can greatly improve the measurement accuracy. During the measurement of the fission cross-section, the number of target nuclei is required to be accurately measured. So this paper introduces a method for measuring the number of 235U target nuclei using a fission TPC system. The measurement result agrees with the reference value, and relative error is around 1 %.

A Real-time Particle Filtering Framework for Robust Camera Tracking in An AR Environment (증강현실 환경에서의 강건한 카메라 추적을 위한 실시간 입자 필터링 기법)

  • Lee, Seok-Han
    • Journal of Digital Contents Society
    • /
    • v.11 no.4
    • /
    • pp.597-606
    • /
    • 2010
  • This paper describes a real-time camera tracking framework specifically designed to track a monocular camera in an AR workspace. Typically, the Kalman filter is often employed for the camera tracking. In general, however, tracking performances of conventional methods are seriously affected by unpredictable situations such as ambiguity in feature detection, occlusion of features and rapid camera shake. In this paper, a recursive Bayesian sampling framework which is also known as the particle filter is adopted for the camera pose estimation. In our system, the camera state is estimated on the basis of the Gaussian distribution without employing additional uncertainty model and sample weight computation. In addition, the camera state is directly computed based on new sample particles which are distributed according to the true posterior of system state. In order to verify the proposed system, we conduct several experiments for unstable situations in the desktop AR environments.