• 제목/요약/키워드: Particle swarm optimization (PSO)

검색결과 500건 처리시간 0.024초

부분방전 패턴인식을 위해 EMC센서를 이용한 최적화된 RBFNNs 분류기 설계 (Design of Optimized Radial Basis Function Neural Networks Classifier Using EMC Sensor for Partial Discharge Pattern Recognition)

  • 정병진;이승철;오성권
    • 전기학회논문지
    • /
    • 제66권9호
    • /
    • pp.1392-1401
    • /
    • 2017
  • In this study, the design methodology of pattern classification is introduced for avoiding faults through partial discharge occurring in the power facilities and local sites. In order to classify some partial discharge types according to the characteristics of each feature, the model is constructed by using the Radial Basis Function Neural Networks(RBFNNs) and Particle Swarm Optimization(PSO). In the input layer of the RBFNNs, the feature vector is searched and the dimension is reduced through Principal Component Analysis(PCA) and PSO. In the hidden layer, the fuzzy coefficients of the fuzzy clustering method(FCM) are tuned using PSO. Raw datasets for partial discharge are obtained through the Motor Insulation Monitoring System(MIMS) instrument using an Epoxy Mica Coupling(EMC) sensor. The preprocessed datasets for partial discharge are acquired through the Phase Resolved Partial Discharge Analysis(PRPDA) preprocessing algorithm to obtain partial discharge types such as void, corona, surface, and slot discharges. Also, when the amplitude size is considered as two types of both the maximum value and the average value in the process for extracting the preprocessed datasets, two different kinds of feature datasets are produced. In this study, the classification ratio between the proposed RBFNNs model and other classifiers is shown by using the two different kinds of feature datasets, and also we demonstrate the proposed model shows superiority from the viewpoint of classification performance.

전투실험 분석을 위한 최적화 시뮬레이션 프레임워크 (Optimized Simulation Framework for the Analysis in Battle systems)

  • 강종구;이민규;김선범;황근철;이동훈
    • 한국시뮬레이션학회논문지
    • /
    • 제24권2호
    • /
    • pp.1-9
    • /
    • 2015
  • 다양한 변수들이 존재하는 현대의 전투전장에서는 운용전술에 따라 전투의 양상이 결정되기 때문에 최적화된 운용전술을 도출하는 연구가 필요하다. 기존의 M&S(Modeling & Simulation) 연구에서는 몬테 칼로 실험을 통해 변수들을 분석하는 것이 일반적이다. 그러나 이 방법은 상호 복합적으로 작용하는 다수의 변수들의 모든 조합에 대해 시뮬레이션을 수행하기 때문에, 많은 수행시간이 소요되고 최적의 운용전술 도출을 위한 별도의 분석이 필요하다. 본 논문에서는 최적화 요소를 찾는 전산탐색 기법 중 하나인 DPSO(Discrete binary version of PSO) 알고리즘을 기반으로 하는 최적화 시뮬레이션 프레임워크를 제안하였다. 최적화 시뮬레이션 프레임워크는 짧은 시간 내에 최적화된 운용전술을 도출하기 위하여 설계되었다. 본 연구에서는 아군 수상함이 적 어뢰로부터 회피하는 사례를 적용하여 최적화 시뮬레이션 프레임워크의 탐색 성능을 확인하였다. 이를 통해 최적화 시뮬레이션 프레임워크의 효율성을 제시하였다.

지반공학 분야에 대한 차분진화 알고리즘 적용성 분석 (Analysis for Applicability of Differential Evolution Algorithm to Geotechnical Engineering Field)

  • 안준상;강경남;김산하;송기일
    • 한국지반공학회논문집
    • /
    • 제35권4호
    • /
    • pp.27-35
    • /
    • 2019
  • 역해석 수행 시 상대적으로 복잡한 공간 및 목표 설계 변수가 많은 경우, 지반공학 분야에 적용하기 위한 연구를 수행하였다. 지반공학 다변수 문제에 대한 모델로 터널 분야 및 흙막이벽체에 대해서 Sharan 공식 및 Blum 방법을 사용하였다. 최적화 방법은 크게 결정론적인 방법 및 확률론적인 방법으로 구분된다. 본 연구에서는 전자 중 모의강화법(SA), 후자 중 차분진화 알고리즘(DEA), 입자 군집 최적화 알고리즘(PSO)을 선택하여 다변수 모델을 적용해서 비교하였다. 지반공학 다변수 역해석 문제에서 결정론적인 방법은 문제가 있음을 확인하였고, 차분진화 알고리즘의 우수성을 확인하였다. DEA는 Sharan의 이론 해에 대한 문제에서 평균 3.12%, Blum 문제에 대해서 평균 2.23% 오차율을 보였고, 반복 탐색 회수도 가장 작은 것으로 파악되었다. DEA 대비해서 SA는 117.39~167.13배, PSO는 2.43~6.91배의 탐색시간이 소요되었다. 지반공학 문제의 다변수 역해석에 차분진화 알고리즘을 적용하면, 계산속도 및 정확도가 향상될 것으로 기대된다.

생태계 모방 알고리즘 기반 특징 선택 방법의 성능 개선 방안 (Performance Improvement of Feature Selection Methods based on Bio-Inspired Algorithms)

  • 윤철민;양지훈
    • 정보처리학회논문지B
    • /
    • 제15B권4호
    • /
    • pp.331-340
    • /
    • 2008
  • 특징 선택은 기계 학습에서 분류의 성능을 높이기 위해 사용되는 방법이다. 여러 방법들이 개발되고 사용되어 오고 있으나, 전체 데이터에서 최적화된 특징 부분집합을 구성하는 문제는 여전히 어려운 문제로 남아있다. 생태계 모방 알고리즘은 생물체들의 행동 원리 등을 기반으로하여 만들어진 진화적 알고리즘으로, 최적화된 해를 찾는 문제에서 매우 유용하게 사용되는 방법이다. 특징 선택 문제에서도 생태계 모방 알고리즘을 이용한 해결방법들이 제시되어 오고 있으며, 이에 본 논문에서는 생태계 모방 알고리즘을 이용한 특징 선택 방법을 개선하는 방안을 제시한다. 이를 위해 잘 알려진 생태계 모방 알고리즘인 유전자 알고리즘(GA)과 파티클 집단 최적화 알고리즘(PSO)을 이용하여 데이터에서 가장분류 성능이 우수한 특징 부분집합을 만들어 내도록 하고, 최종적으로 개별 특징의 사전 중요도를 설정하여 생태계 모방 알고리즘을 개선하는 방법을 제안하였다. 이를 위해 개별 특징의 우수도를 구할 수 있는 mRMR이라는 방법을 이용하였다. 이렇게 설정한 사전 중요도를 이용하여 GA와 PSO의 진화 연산을 수정하였다. 데이터를 이용한 실험을 통하여 제안한 방법들의 성능을 검증하였다. GA와 PSO를 이용한 특징 선택 방법은 그 분류 정확도에 있어서 뛰어난 성능을 보여주었다. 그리고 최종적으로 제시한 사전 중요도를 이용해 개선된 방법은 그 진화 속도와 분류 정확도 면에서 기존의 GA와 PSO 방법보다 더 나아진 성능을 보여주는 것을 확인하였다.

상단 발사체 추력기 최적 배치 연구 (Upper-Stage Launch Vehicle Servo Controller Design Considering Optimal Thruster Configuration)

  • 황태원;탁민제;방효충
    • 한국항공우주학회지
    • /
    • 제31권9호
    • /
    • pp.55-63
    • /
    • 2003
  • 본 연구에서는 다수의 추력기를 이용한 발사체 상단 RCS 자세 제어 시스템에 대해 다룬다. 이때 추력기 배치 위치와 부착 각도에 따라 시스템 응답 특성, 연료소모량, 추력 분배로직에 의한 유효 토크량, 고장대응 용이성이 달라진다. 최적화 기법을 이용하여 27개의 명령에 대해 명령 방향과 일치하면서 최대 응답 토크량을 갖도록 하는 최적의 배치를 찾는 방법을 제안하였다. 기존에 주어진 추력기 배치 형상과 제안된 추력기 배치 형상에 대한 수치 해석 결과를 비교함으로서 제안된 추력기 배치 형상에 정당성을 찾고자 한다.

Performance of multiple tuned mass dampers-inerters for structures under harmonic ground acceleration

  • Cao, Liyuan;Li, Chunxiang;Chen, Xu
    • Smart Structures and Systems
    • /
    • 제26권1호
    • /
    • pp.49-61
    • /
    • 2020
  • This paper proposes a novel high performance vibration control device, multiple tuned mass dampers-inerters (MTMDI), to suppress the oscillatory motions of structures. The MTMDI, similar to the MTMD, involves multiple tuned mass damper-inerter (TMDI) units. In order to reveal the basic performance of the MTMDI, it is installed on a single degree-of-freedom (SDOF) structure excited by the ground acceleration, and the dynamic magnification factors (DMF) of the structure-MTMDI system are formulated. The optimization criterion is determined as the minimization of maximum values of the relative displacement's DMF for the controlled structure. Based on the particle swarm optimization (PSO) algorithm to tune the optimum parameters of the MTMDI, its performance has been investigated and evaluated in terms of control effectiveness, strokes, stiffness and damping coefficient, inerter element force, and robustness in frequency domain. Meanwhile, further comparison between the MTMDI with MTMD has been conducted. Numerical results clearly demonstrate the MTMDI outperforms the MTMD in control effectiveness and strokes of mass blocks. Additionally, in the aspects of frequency perturbations on both earthquake excitations and structures, the robustness of the MTMDI is also better than the MTMD.

Prediction and analysis of optimal frequency of layered composite structure using higher-order FEM and soft computing techniques

  • Das, Arijit;Hirwani, Chetan K.;Panda, Subrata K.;Topal, Umut;Dede, Tayfun
    • Steel and Composite Structures
    • /
    • 제29권6호
    • /
    • pp.749-758
    • /
    • 2018
  • This article derived a hybrid coupling technique using the higher-order displacement polynomial and three soft computing techniques (teaching learning-based optimization, particle swarm optimization, and artificial bee colony) to predict the optimal stacking sequence of the layered structure and the corresponding frequency values. The higher-order displacement kinematics is adopted for the mathematical model derivation considering the necessary stress and stain continuity and the elimination of shear correction factor. A nine noded isoparametric Lagrangian element (eighty-one degrees of freedom at each node) is engaged for the discretisation and the desired model equation derived via the classical Hamilton's principle. Subsequently, three soft computing techniques are employed to predict the maximum natural frequency values corresponding to their optimum layer sequences via a suitable home-made computer code. The finite element convergence rate including the optimal solution stability is established through the iterative solutions. Further, the predicted optimal stacking sequence including the accuracy of the frequency values are verified with adequate comparison studies. Lastly, the derived hybrid models are explored further to by solving different numerical examples for the combined structural parameters (length to width ratio, length to thickness ratio and orthotropicity on frequency and layer-sequence) and the implicit behavior discuss in details.

Structural failure classification for reinforced concrete buildings using trained neural network based multi-objective genetic algorithm

  • Chatterjee, Sankhadeep;Sarkar, Sarbartha;Hore, Sirshendu;Dey, Nilanjan;Ashour, Amira S.;Shi, Fuqian;Le, Dac-Nhuong
    • Structural Engineering and Mechanics
    • /
    • 제63권4호
    • /
    • pp.429-438
    • /
    • 2017
  • Structural design has an imperative role in deciding the failure possibility of a Reinforced Concrete (RC) structure. Recent research works achieved the goal of predicting the structural failure of the RC structure with the assistance of machine learning techniques. Previously, the Artificial Neural Network (ANN) has been trained supported by Particle Swarm Optimization (PSO) to classify RC structures with reasonable accuracy. Though, keeping in mind the sensitivity in predicting the structural failure, more accurate models are still absent in the context of Machine Learning. Since the efficiency of multi-objective optimization over single objective optimization techniques is well established. Thus, the motivation of the current work is to employ a Multi-objective Genetic Algorithm (MOGA) to train the Neural Network (NN) based model. In the present work, the NN has been trained with MOGA to minimize the Root Mean Squared Error (RMSE) and Maximum Error (ME) toward optimizing the weight vector of the NN. The model has been tested by using a dataset consisting of 150 RC structure buildings. The proposed NN-MOGA based model has been compared with Multi-layer perceptron-feed-forward network (MLP-FFN) and NN-PSO based models in terms of several performance metrics. Experimental results suggested that the NN-MOGA has outperformed other existing well known classifiers with a reasonable improvement over them. Meanwhile, the proposed NN-MOGA achieved the superior accuracy of 93.33% and F-measure of 94.44%, which is superior to the other classifiers in the present study.

A novel analytical evaluation of the laboratory-measured mechanical properties of lightweight concrete

  • S. Sivakumar;R. Prakash;S. Srividhya;A.S. Vijay Vikram
    • Structural Engineering and Mechanics
    • /
    • 제87권3호
    • /
    • pp.221-229
    • /
    • 2023
  • Urbanization and industrialization have significantly increased the amount of solid waste produced in recent decades, posing considerable disposal problems and environmental burdens. The practice of waste utilization in concrete has gained popularity among construction practitioners and researchers for the efficient use of resources and the transition to the circular economy in construction. This study employed Lytag aggregate, an environmentally friendly pulverized fuel ash-based lightweight aggregate, as a substitute for natural coarse aggregate. At the same time, fly ash, an industrial by-product, was used as a partial substitute for cement. Concrete mix M20 was experimented with using fly ash and Lytag lightweight aggregate. The percentages of fly ash that make up the replacements were 5%, 10%, 15%, 20%, and 25%. The Compressive Strength (CS), Split Tensile Strength (STS), and deflection were discovered at these percentages after 56 days of testing. The concrete cube, cylinder, and beam specimens were examined in the explorations, as mentioned earlier. The results indicate that a 10% substitution of cement with fly ash and a replacement of coarse aggregate with Lytag lightweight aggregate produced concrete that performed well in terms of mechanical properties and deflection. The cementitious composites have varying characteristics as the environment changes. Therefore, understanding their mechanical properties are crucial for safety reasons. CS, STS, and deflection are the essential property of concrete. Machine learning (ML) approaches have been necessary to predict the CS of concrete. The Artificial Fish Swarm Optimization (AFSO), Particle Swarm Optimization (PSO), and Harmony Search (HS) algorithms were investigated for the prediction of outcomes. This work deftly explains the tremendous AFSO technique, which achieves the precise ideal values of the weights in the model to crown the mathematical modeling technique. This has been proved by the minimum, maximum, and sample median, and the first and third quartiles were used as the basis for a boxplot through the standardized method of showing the dataset. It graphically displays the quantitative value distribution of a field. The correlation matrix and confidence interval were represented graphically using the corrupt method.

Optimal fiber volume fraction prediction of layered composite using frequency constraints- A hybrid FEM approach

  • Anil, K. Lalepalli;Panda, Subrata K.;Sharma, Nitin;Hirwani, Chetan K.;Topal, Umut
    • Computers and Concrete
    • /
    • 제25권4호
    • /
    • pp.303-310
    • /
    • 2020
  • In this research, a hybrid mathematical model is derived using the higher-order polynomial kinematic model in association with soft computing technique for the prediction of best fiber volume fractions and the minimal mass of the layered composite structure. The optimal values are predicted further by taking the frequency parameter as the constraint and the projected values utilized for the computation of the eigenvalue and deflections. The optimal mass of the total layered composite and the corresponding optimal volume fractions are evaluated using the particle swarm optimization by constraining the arbitrary frequency value as mass/volume minimization functions. The degree of accuracy of the optimal model has been proven through the comparison study with published well-known research data. Further, the predicted values of volume fractions are incurred for the evaluation of the eigenvalue and the deflection data of the composite structure. To obtain the structural responses i.e. vibrational frequency and the central deflections the proposed higher-order polynomial FE model adopted. Finally, a series of numerical experimentations are carried out using the optimal fibre volume fraction for the prediction of the optimal frequencies and deflections including associated structural parameter.