• 제목/요약/키워드: Particle size effect

검색결과 1,992건 처리시간 0.026초

Effect of Particle Size on the Physicochemical and Nutritional Properties of Egg Yolk Porridge (입자 크기에 따른 난황죽의 이화학적 및 영양학적 특성)

  • Kim, Hye-Ran;Kim, Mee-Ree
    • Journal of the East Asian Society of Dietary Life
    • /
    • 제20권1호
    • /
    • pp.77-83
    • /
    • 2010
  • The study was conducted to investigate the effect of particle size on the physicochemical properties of egg yolk-rice porridge. The pH of egg yolk-rice porridge was decreased when compared to that of the control, while the lightness and yellowness was increased as the rice particle size increased. The viscosity of whole particle egg yolk porridge was highest among the three porridges at $40^{\circ}C$. The protein content of the egg yolk-rice porridge was increased three-fold, when compared to that of the rice porridges. The total amino acid content of egg yolk-rice porridge was 1,500.6 mg/100 g, while that of rice was 1,147.5 mg/100 g. The Lys and Thr content of the amino acid content of egg yolk-rice porridge were also increased. Sensory evaluation results revealed that the half particle size rice egg yolk-rice porridge had the highest scores in color, taste and over-all preference. Based on these results, the half particle size egg yolk-porridge had good quality with respect to both the physicochemical and nutritional properties.

Particle Beam Focusing Using Radiation Pressure (광압을 이용한 입자빔 집속)

  • Kim, Sang-Bok;Park, Hyung-Ho;Kim, Sang-Soo
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1505-1509
    • /
    • 2004
  • A novel technique for fine particle beam focusing under the atmospheric pressure is introduced using a radiation pressure assisted aerodynamic lens. To introduce the radiation pressure in the aerodynamic focusing system, a 25 mm plano-convex lens having 2.5 mm hole at its center is used as an orifice. The particle beam width is measured for various laser power, particle size, and flow velocity. In addition, the effect of the laser characteristics on the beam focusing is evaluated comparing an Ar-Ion continuous wave laser and a pulsed Nd-YAG laser. For the pure aerodynamic focusing system, the particle beam width was decreased as increasing particle size and Reynolds number. For the particle diameter of 0.5 ${\mu}m$, the particle beam was broken due to the secondary flow at Reynolds number of 694. Using the Ar-Ion CW laser, the particle beam width becomes smaller than that of the pure aerodynamic focusing system about 16 %, 11.4 % and 9.6 % for PSL particle size of 2.5 ${\mu}m$, 1.0 ${\mu}m$, and 0.5 ${\mu}m$ respectively at the Reynolds number of 320. Particle beam width was minimized around the laser power of 0.2 W. However, as increasing the laser power higher than 0.4 W, the particle beam width was increased a little and it approached almost a constant value which is still smaller than that of the pure aerodynamic focusing system. The radiation pressure effect on the particle beam width is intensified as Reynolds number decreases or particle size increases relatively. On the other hand, using 30 Hz pulsed Nd-YAG laser, the effect of the radiation pressure on the particle beam width was not distinct unlike Ar-Ion CW laser.

  • PDF

The Size Effect in Particulate Composite Materials - Size - Dependent Plasticity (입자보강 복합재료에서 크기효과 -Size-Dependent 소성역학)

  • Kim S. H.;Huh H.;Hahn H. Thomas
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.167-170
    • /
    • 2005
  • This paper briefly reviews various existing methods to account for the effect of particle size on mechanical properties of particulate metal matrix composites. A simple and easy method is to use a size-dependent constitutive equation for the matrix. The suggested method does not require the development of a new computational algorithm and is compatible with any standard finite element software. Finite element analyses have been carried out to show how the deformation behavior of a metal matrix composite changes as the particle size and volume fraction are varied.

  • PDF

Effects of Contamination Source and Particle Size on Arsenic Speciation and Bioaccessibility in Soils (오염원에 따른 토양 입경 별 비소의 오염특성 및 생물학적 접근성 평가)

  • Kwon, Ye-Seul;Kim, Eun Jung
    • Journal of Soil and Groundwater Environment
    • /
    • 제22권5호
    • /
    • pp.89-97
    • /
    • 2017
  • In this study, we evaluated effect of particle size on arsenic solid-state speciation and bioaccessibility in soils highly contaminated with arsenic from smelting and mining. Soils were partitioned into six particle size fractions ($2000-500{\mu}m$, $500-250{\mu}m$, $250-150{\mu}m$, $150-75{\mu}m$, $75-38{\mu}m$, <$38{\mu}m$), and arsenic solid-state speciation and bioaccessibility were characterized in each particle size fraction. Arsenic solid-state speciation was characterized via sequential extraction and XRD analysis, and arsenic bioaccessibility was evaluated by SBRC (Solubility Bioaccessibility Research Consortium) method. In smelter site soil, arsenic was mainly present as arsenic bound to amorphous iron oxides. Fine particle size fractions showed higher arsenic concentration, but lower arsenic bioaccessibility. On the other hand, arsenic in mine site soil showed highest concentration in largest particle size fraction ($2000-500{\mu}m$), while higher bioaccessibility was observed in smaller particle size fractions. Arsenic in mine site soil was mainly present as arsenolite ($As_2O_3$) phase, which seemed to affect the distribution of arsenic and arsenic bioaccessibility in different particle size fractions of the mine soil.

Size Dependent Absorption Spectrum of ZnO Nanocrystals

  • Chang Ho Jung;Wang Yongsheng;Suh Kwang-Jong;Son Chang-Sik
    • Korean Journal of Materials Research
    • /
    • 제15권7호
    • /
    • pp.431-434
    • /
    • 2005
  • To investigate the dependences of the absorption spectrum and electronic structure properties on the ZnO nano-particle size, ZnO nanocrystals were synthesized by a sol-gel method. The absorption onset peak exhibits a systematic blue-shift with decreasing particle size due to the quantum confinement effect, as well as, with decreasing $Zn^{2+}$ concentration. The increase of particle size is mainly controlled by coarsening and aggregation step during the nucleation and growth of ZnO nano-particles. The onset absorption spectrum of ZnO colloids changes from 310 to 355 nm as $Zn^{2+}$ concentration increases from 0.01 to 0.1 mole. The average particle size as a function of aging- time can be determined from the absorption spectra. The freshly prepared nanocrystal size was about 2.8nm.

Strength Analysis of Particle-Reinforced Aluminum Composites with Length-Scale Effect based on Geometrically Necessary Dislocations (기하적 필수 전위에 의한 길이효과를 고려한 입자 강화 알루미늄 복합재의 강도해석)

  • Sub, Y.S.;Kim, Y.B.;Rhee, Z.K.
    • Transactions of Materials Processing
    • /
    • 제18권6호
    • /
    • pp.482-487
    • /
    • 2009
  • A finite element based microstructural modeling for the size dependent strengthening of particle reinforced aluminum composites is presented. The model accounts explicitly for the enhanced strength in a discretely defined "punched zone" around the particle in an aluminum matrix composite as a result of geometrically necessary dislocations developed through a CTE mismatch. The density of geometrically necessary dislocations is calculated considering volume fraction of the particle. Results show that predicted flow stresses with different particle size are in good agreement with experiments. It is also shown that 0.2% offset yield stresses increases with smaller particles and larger volume fractions and this length-scale effect on the enhanced strength can be observed by explicitly including GND region around the particle. The strengths predicted with the inclusion of volume fraction in the density equation are slightly lower than those without.

Effects of feed form and feed particle size with dietary L-threonine supplementation on performance, carcass characteristics and blood biochemical parameters of broiler chickens

  • Rezaeipour, Vahid;Gazani, Sepideh
    • Journal of Animal Science and Technology
    • /
    • 제56권5호
    • /
    • pp.20.1-20.5
    • /
    • 2014
  • An experiment was conducted to evaluate the effect of form and particle size of feed supplemented with L-threonine on growth performance, carcass characteristic and blood biochemical parameters of broiler chickens. The experimental design was a $2{\times}2{\times}2$ factorial arrangement of treatments evaluating two feed forms (pellet or mash), two feed particle sizes (fine or course), and two inclusion rates of dietary L-threonine (with or without) which adopted from 7 to 42 days of age. In this experiment, 360 a day old chicks in two sexes were assigned in each treatment and each experimental unit was included 15 chicks. Feed consumption and weight gain were measured weekly. At 35 days of age, blood samples were taken to analysis blood biochemical parameters. At the end of the experimental period, two birds were slaughtered in each treatment and carcass analysis was carried out. The results showed that the effect of feed form on body weight gain and feed intake in whole of experimental period was significant (P < 0.05). Broilers fed pelleted diets had more weight gain than the mash group. Growth performance parameters were not affected by feed particle size and dietary L-threonine supplementation in whole of experimental period (P > 0.05). The results of carcass analysis showed that liver and gizzard relative weights were influenced by feed form (P < 0.05). However, pancreas and liver relative weights were affected by feed particle size and dietary L-threonine supplementation, respectively (P < 0.05). Triglyceride and VLDL levels were affected by feed form and dietary L-threonine supplementation (P < 0.05). The effect of feed particle size on blood biochemical parameters was not significant (P > 0.05). In conclusion, the experimental results indicated that feed form increased feed consumption and weight gain in whole of experimental period (1 to 42 days of age) while feed particle size and dietary L-threonine had no effect on broiler performance.

Performance Characteristics of In-Situ Particle Monitors at Sub-Atmospheric Pressure (감압상태에서의 In-Situ Particle Monitor의 성능특성)

  • Bae, Gwi-Nam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제22권11호
    • /
    • pp.1564-1570
    • /
    • 1998
  • In-situ particle monitors(ISPMs) are widely used for monitoring contaminant particles in vacuum-based semiconductor manufacturing equipment. In the present research, the performance of a Particle Measuring Systems(PMS) Vaculaz-2 ISPM at subatmospheric pressures has been studied. We created uniform upstream conditions of particle concentration and measured the detection efficiency, the lower detection limit, and the size response of the ISPM using uniform sized methylene blue aerosol particles. The effect of particle size, particle velocity, particle concentration, and system pressure on the detection efficiency was examined. Results show that the detection efficiency of the ISPM decreases with decreasing chamber pressure, and with increasing mass flow rate. The lower detection limit of the ISPM, determined at 50 % of the measured maximum detection efficiency, was found to be about $0.15{\sim}0.2{\mu}m$, which is similar to the minimum detectable size of $0.17{\mu}$ given by the manufacturer.

The Effect of Particle Shape and Size on the Settling Characteristics in Suspension (서스펜션 중에서 입자의 형태와 크기가 침강특성에 미치는 영향)

  • Lee, Ji-Jong
    • Korean Journal of Materials Research
    • /
    • 제4권8호
    • /
    • pp.927-933
    • /
    • 1994
  • The effect of particle shape and size on the settling characteristics in monodisperse suspensions of non-spherical particles was investigated. The slope index n values which was obtained from the plot of logarithm of settling rate vs. voidage were increased with the decrease of particle size because different amount of liquid could be adsorbed on irregular particle shape and/or size at same volume concentration. From the experimental results, an equation, $n_{i}=n(a+b/d_{v})$ where n is value of spherical particles, dv is minimum particle diameter and a, b are constants for characteristic of particles.

  • PDF

Methanol Oxidation Effect on Carbon Supported Pt Particles Studied by 13C NMR, XRD, and TEM

  • Han, Kee Sung;Han, Oc Hee
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권8호
    • /
    • pp.1121-1126
    • /
    • 2006
  • Methanol oxidation effect on carbon supported Pt was investigated as a function of Pt content in a sample which is closely correlated with Pt particle sizes. After prolonged methanol oxidation the Pt particle size did not change within the experimental error ranges. The $^{13}C$ chemical shift and linewidth of CO adsorbed on Pt show non-linear behavior simply due to the Pt particle size difference. The Pt size variation difference between this work and the previous reports of the particle growths is explained by the experimental temperature difference.