• Title/Summary/Keyword: Particle reinforced composites

Search Result 155, Processing Time 0.028 seconds

WEAR BEHAVIOR OF SiC-PARTICLE REINFORCED ALUMINUM MATRIX COMPOSITES IN VARIOUS ENVIRONMENTS

  • Miyajima, T.;Yamamoto, T.;Iwai, Y.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.241-242
    • /
    • 2002
  • Wear behavior or SiC-particle reinforced aluminum matrix composites (MMC) were investigated by pin-on-disk tests in vacuum with various pressures, argon, and air with various levels of humidity. The wear rate of 2024Al and MMC increased in the following order: in a vacuum at $5.0{\times}10^{-4}$ Pa, at 1.0Pa, in argon at 0% RH, in argon at 60% RH, in argon at 90% RH, in air at 0% RH, in air at 60% RH and in air at 90% RH. In other words, the influence or environment on wear becomes stronger in the following order: moisture, oxygen, and a combination of moisture and oxygen. In various environments, the difference of the wear rate of 2024Al and MMC was compared. In argon and air at 0% RH, the wear rates of MMC were higher than that of 2024Al. In contrast, in argon and air at 60, 90% RH, the wear rates of MMC were lower than that of 2024Al.

  • PDF

Strengthening Mechanism of Hybrid Short Fiber/Particle Reinforced Metal Matrix Composites (섬유/입자 혼합 금속복합재료의 강화기구 해석)

  • 정성욱;이종해;정창규;송정일;한경섭
    • Composites Research
    • /
    • v.13 no.1
    • /
    • pp.50-60
    • /
    • 2000
  • This paper presents an analytical method considering tensile strength enhancement in hybrid $Al_2O_3$ fiber/particle/aluminum composites(MMCs). The tensile strength and elastic modulus of the hybrid MMCs are even 20% higher than those of the fiber reinforced MMCs with same volume fraction of reinforcements. This phenomenon is explained by the cluster model which is newly proposed in this research, and the strengthening mechanisms by a cluster is analyzed using simple modified rule of mixtures. From the analysis, it is observed that cluster structure in hybrid MMCs increase the fiber efficiency factor for the tensile strength and the orientation factor for the elastic modulus. The present theory is then compared with experimental results which was performed using squeeze infiltrated hybrid MMCs made of hybrid $Al_2O_3$ short fiber/particle preform and AC8A alloy as base metal, and the agreement is found to be satisfactory.

  • PDF

Characteristics in Microstructure of Particle Reinforced Al Matrix Composites Fabricated by Spray-Cast Forming Process (분사주조한 입자강화 알루미늄 복합재료의 미세조직 특성)

  • Park, Chong-Sung;Lee, In-Woo;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.14 no.6
    • /
    • pp.530-540
    • /
    • 1994
  • Aluminium-silicon alloy(JIS AC8A) matrix composites reinforced with SiC particles were fabricated by spray-cast forming process, and the microstructure of powders and preforms produced were studied by using an optical and scanning electron microscopy. SiC particles were co-sprayed by mixed phase injection method during the spray casting process. Most of the composite powders formed by this mixed phase injection method exhibit morphology of particle-embedded type, and some exhibits the morphology of particle attached type due to additional attachment of the SiC particles on the surface of the powders in flight. The preforms deposited were resulted in dispersed type microstructure. The pre-solidified droplets and the deposited preform of SiC-reinforced aluminium alloy exhibit finer equiaxed grain size than that of unreinforced aluminium alloy. Eutectic silicons of granular type are crystallized at the corner of the aluminum grains in the preforms deposited, and some SiC particles seem to act as nucleation sites for primary/eutectic silicon during solidification. Such primary/eutectic silicons seem to retard grain growth during the continued spray casting process. It is envisaged from the microstructural observations for the deposited preform that the resultant distribution of SiC injected particles in the Al-Si microsturcture is affected by the amount of liquid phase in the top part of the preform and by the solidification rate of the preform deposited.

  • PDF

Heat and Wear Resistance Characterization of SiCp Reinforced Al Matrix Composites (SiCp입자강화 Al 복합재료의 내열 및 마모특성)

  • Kim, Sug-Won;Kim, Wan-Ki;Woo, Kee-Do;Ahn, Haeng-Keun
    • Journal of Korea Foundry Society
    • /
    • v.20 no.6
    • /
    • pp.377-385
    • /
    • 2000
  • Al matrix composites as the most promising MMCs can be expected to be excellent engineering materials in the nearest future. So as to improve material properties of composite, many manufacturing processes have been developed. Among them, squeeze casting process which offers fine microstructure and near-net-shape is one of the most successful MMCs manufacturing processes. But, in case of with subsieve size particles (under 44 ${\mu}m$), it is very difficult to homogeneously distribute particles in matrix of Al matrix composite by various casting processes, including squeeze casting used so far. Duplex process which was developed in previous study was used to distribute the particle of subsieve size more homogeneously in matrix of Al matrix composite. Microstructures, wear and heat resistance characterization of Al-Si-Cu-Mg-(Ni)/SiCp manufactured by duplex process were examined to clarify the effect of manufacturing conditions, particle size of reinforcement and alloying elements. Al matrix composites reinforced with SiCp(10 ${\mu}m$) have the lowest wear amount among composites reinforced with 3 ${\mu}m$, 5 ${\mu}m$ and 10 ${\mu}m$ SiCp. The wear amount of Al matrix composites with 10 wt.% SiCp(3, 5, 10 ${\mu}m$) was decreased according to the increase of the sliding speed because abrasive wear takes place at high sliding speed of 4m/s and worn debris with block type occurs at low sliding speed of 1m/s. As for heat resistance, it is made clear that remarkable heat resistance property can be obtained by addition of Ni element in Al matrix composites.

  • PDF

Tribological and Mechanical Properties of UHMWPE/HDPE Composites

  • Na, Woo Seok;Lee, Kwang Ho;Kong, Tae Woong;Baek, Jung Youn;Oh, Jeong Seok
    • Elastomers and Composites
    • /
    • v.53 no.4
    • /
    • pp.234-238
    • /
    • 2018
  • The influence of reinforcing UHMWPE powder on the tribological and mechanical properties of HDPE was investigated. The circularizing of UHMWPE powder was improved by high-speed rotation to enhance particle distribution and flowability. HDPE composites reinforced with UHMWPE powder in the range of 0-50 wt% were prepared by co-rotating twin screw extrusion. The abrasion resistance, plane friction coefficient, tensile strengths, and impact strengths of the composites were investigated as a function of the UHMWPE content. An increasing UHMWPE content decreased the plane friction coefficient and increased the abrasion resistance and impact strength. It is expected that HDPE composites reinforced with spherical UHMWPE powder particles can be used to improve the durability of products such as pipes in the future.

PRODUCTION AND MACHINABILITY OF SiCp-REINFORCED AL-2014 ALLOY MATRIX COMPOSITES

  • Ciftci, I.;Sahin, Y.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.313-314
    • /
    • 2002
  • SiCp-reinforced metal matrix composites (MMCs) containing 8 wt % and 16 wt % of $SiC_p-reinforced$ with 30 and $45\;{\mu}m$ in sizes were prepared by a melt stirring-squeeze casting technique. Microstructural observation showed that particle distributions were reasonably well. Turning experiments were carried out on the composites using uncoated and triple-layer coated carbide tools at various cutting speeds under a constant feed rate and depth of cut. Coated tools indicated better performance than uncoated tools for all the materials while the poor surface finish was obtained for coated tools.

  • PDF

Effect of Manufacturing Factors on Mechanical Properties of the Rice-husk Powder Composites (왕겨분말 복합재료의 기계적 특성에 미치는 제조인자의 영향)

  • Choi J.Y.;Wang Renliang;Yoon H.C.;Lim J.K.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.7 s.250
    • /
    • pp.794-799
    • /
    • 2006
  • In recent years, the use of natural fiber as reinforcement in polymer composites to replace synthetic fiber such as glass fiber is receiving increasing attention. Because of increasing usage according to the high demand, the cost of thermoplastic has increased rapidly over the past decades. We used a thermoplastic polymer(polypropylene) as the matrix and a lignocellulosic material(rice-husk flour) as the reinforcement filler to prepare a particle-reinforced composite to examine the possibility of using lignocellulosic material as reinforcement filler and to determine data of test results for physical, mechanical and morphological properties of the composite according to the reinforcement filler content in respect to thermoplastic polymer, In this study, PLA/PP rice-husk fiber-reinforced thermoplastic composites that made by the hot press molding method according to appropriate manufacturing process was evaluated as mechanical properties.

A Parametric Study for a Composite Constitutive Model Considering weakened Interfaces and Microcracks (계면손상과 미세균열을 고려한 복합재료 구성모델의 파라미터에 관한 연구)

  • Lee, Haeng-Ki;Pyo, Suk-Hoon;Kim, Hyeong-Ki
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.56-59
    • /
    • 2008
  • This paper presents results of a parametric study for a constitutive model (Lee et ai, 1989) for particle-reinforced composites considering weakened interfaces and crack nucleation. Eshelby's tensors for particles with imperfect interfaces (Ju and Chen, 1994) and microcracks (Sun and Ju, 2004) are incorporated into a micromechanical formulation. A parametric study for the microcrack nucleation parameter ${\phi}_{{\upsilon}0}$ and ${\epsilon}^{th}$ is conducted to investigate the sensitivity of the parameter to the constitutive model.

  • PDF

Wear Behavior of Saffil/SiCp reinforced Metal Matrix Composites at the room temperature (Saffil/SiCp을 이용한 금속 복합재료의 상온 마모 거동)

  • 조종인;한경섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.46-49
    • /
    • 2003
  • Aluminum based metal matrix composites(MMCs) are well known for their high specific strength, stiffness and hardness. They are gaining further importance because of their high wear resistance. In this study, Al/Saffil-20%, Al/Saffil-5%/Al2O3(particle type)-15% and Al/Saffil-5%/SiC(particle type)-15% hybird MMCs' wear behavior were characterized by the pin-on-disk test under various normal load The superior wear resistance was exhibited at Al/Saffil-5%/SiC(particle type)-15% MMCs. And this MMCs' predominant wear mechanism is subsurface cracking in the low load wear regime. Others(Al/Saffil-20%, Al/Saffil-5%/Al2O3(particle type)-15%) showed the similar wear resistance with each other at the same test condition. In the low load & room temperature condition, the wear resistance was improved due to the high hardness of the ceramic reinforcements. As the test load increased, the wear properties were governed by the wear properties of matrix.

  • PDF

Hierarchical Finite-Element Modeling of SiCp/Al2124-T4 Composites with Dislocation Plasticity and Size-Dependent Failure (전위 소성과 크기 종속 파손을 고려한 SiCp/Al2124-T4 복합재의 계층적 유한요소 모델링)

  • Suh, Yeong-Sung;Kim, Yong-Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.2
    • /
    • pp.187-194
    • /
    • 2012
  • The strength of particle-reinforced metal matrix composites is, in general, known to be increased by the geometrically necessary dislocations punched around a particle that form during cooling after consolidation because of coefficient of thermal expansion (CTE) mismatch between the particle and the matrix. An additional strength increase may also be observed, since another type of geometrically necessary dislocation can be formed during extensive deformation as a result of the strain gradient plasticity due to the elastic-plastic mismatch between the particle and the matrix. In this paper, the magnitudes of these two types of dislocations are calculated based on the dislocation plasticity. The dislocations are then converted to the respective strengths and allocated hierarchically to the matrix around the particle in the axisymmetric finite-element unit cell model. The proposed method is shown to be very effective by performing finite-element strength analysis of $SiC_p$/Al2124-T4 composites that included ductile failure in the matrix and particlematrix decohesion. The predicted results for different particle sizes and volume fractions show that the length scale effect of the particle size obviously affects the strength and failure behavior of the particle-reinforced metal matrix composites.