• 제목/요약/키워드: Particle impoverishment

검색결과 3건 처리시간 0.02초

Performance Degradation Due to Particle Impoverishment in Particle Filtering

  • Lim, Jaechan
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권6호
    • /
    • pp.2107-2113
    • /
    • 2014
  • Particle filtering (PF) has shown its outperforming results compared to that of classical Kalman filtering (KF), particularly for highly nonlinear problems. However, PF may not be universally superior to the extended KF (EKF) although the case (i.e. an example that the EKF outperforms PF) is seldom reported in the literature. Particularly, PF approaches show degraded performance for problems where the state noise is very small or zero. This is because particles become identical within a few iterations, which is so called particle impoverishment (PI) phenomenon; consequently, no matter how many particles are employed, we do not have particle diversity regardless of if the impoverished particle is close to the true state value or not. In this paper, we investigate this PI phenomenon, and show an example problem where a classical KF approach outperforms PF approaches in terms of mean squared error (MSE) criterion. Furthermore, we compare the processing speed of the EKF and PF approaches, and show the better speed performance of classical EKF approaches. Therefore, PF approaches may not be always better option than the classical EKF for nonlinear problems. Specifically, we show the outperforming result of unscented Kalman filter compared to that of PF approaches (which are shown in Fig. 7(c) for processing speed performance, and Fig. 6 for MSE performance in the paper).

파티클 필터 알고리즘을 이용한 다기능레이더 표적 추적 필터 설계 (Design of the Target Estimation Filter based on Particle Filter Algorithm for the Multi-Function Radar)

  • 문준
    • 한국군사과학기술학회지
    • /
    • 제14권3호
    • /
    • pp.517-523
    • /
    • 2011
  • The estimation filter in radar systems must track targets' position within low tracking error. In the Multi-Function Radar(MFR), ${\alpha}-{\beta}$ filter and Kalman filter are widely used to track single or multiple targets. However, due to target maneuvering, these filters may not reduce tracking error, therefore, may lost target tracks. In this paper, a target tracking filter based on particle filtering algorithm is proposed for the MFR. The advantage of this method is that it can track targets within low tracking error while targets maneuver and reduce impoverishment of particles by the proposed resampling method. From the simulation results, the improved tracking performance is obtained by the proposed filtering algorithm.

Fault Diagnosis Method Based on High Precision CRPF under Complex Noise Environment

  • Wang, Jinhua;Cao, Jie
    • Journal of Information Processing Systems
    • /
    • 제16권3호
    • /
    • pp.530-540
    • /
    • 2020
  • In order to solve the problem of low tracking accuracy caused by complex noise in the fault diagnosis of complex nonlinear system, a fault diagnosis method of high precision cost reference particle filter (CRPF) is proposed. By optimizing the low confidence particles to replace the resampling process, this paper improved the problem of sample impoverishment caused by the sample updating based on risk and cost of CRPF algorithm. This paper attempts to improve the accuracy of state estimation from the essential level of obtaining samples. Then, we study the correlation between the current observation value and the prior state. By adjusting the density variance of state transitions adaptively, the adaptive ability of the algorithm to the complex noises can be enhanced, which is expected to improve the accuracy of fault state tracking. Through the simulation analysis of a fuel unit fault diagnosis, the results show that the accuracy of the algorithm has been improved obviously under the background of complex noise.