• Title/Summary/Keyword: Particle exposure

Search Result 225, Processing Time 0.031 seconds

Insights Into Emissions and Exposures From Use of Industrial-Scale Additive Manufacturing Machines

  • Stefaniak, A.B.;Johnson, A.R.;du Preez, S.;Hammond, D.R.;Wells, J.R.;Ham, J.E.;LeBouf, R.F.;Martin, S.B. Jr.;Duling, M.G.;Bowers, L.N.;Knepp, A.K.;de Beer, D.J.;du Plessis, J.L.
    • Safety and Health at Work
    • /
    • v.10 no.2
    • /
    • pp.229-236
    • /
    • 2019
  • Background: Emerging reports suggest the potential for adverse health effects from exposure to emissions from some additive manufacturing (AM) processes. There is a paucity of real-world data on emissions from AM machines in industrial workplaces and personal exposures among AM operators. Methods: Airborne particle and organic chemical emissions and personal exposures were characterized using real-time and time-integrated sampling techniques in four manufacturing facilities using industrial-scale material extrusion and material jetting AM processes. Results: Using a condensation nuclei counter, number-based particle emission rates (ERs) (number/min) from material extrusion AM machines ranged from $4.1{\times}10^{10}$ (Ultem filament) to $2.2{\times}10^{11}$ [acrylonitrile butadiene styrene and polycarbonate filaments). For these same machines, total volatile organic compound ERs (${\mu}g/min$) ranged from $1.9{\times}10^4$ (acrylonitrile butadiene styrene and polycarbonate) to $9.4{\times}10^4$ (Ultem). For the material jetting machines, the number-based particle ER was higher when the lid was open ($2.3{\times}10^{10}number/min$) than when the lid was closed ($1.5-5.5{\times}10^9number/min$); total volatile organic compound ERs were similar regardless of the lid position. Low levels of acetone, benzene, toluene, and m,p-xylene were common to both AM processes. Carbonyl compounds were detected; however, none were specifically attributed to the AM processes. Personal exposures to metals (aluminum and iron) and eight volatile organic compounds were all below National Institute for Occupational Safety and Health (NIOSH)-recommended exposure levels. Conclusion: Industrial-scale AM machines using thermoplastics and resins released particles and organic vapors into workplace air. More research is needed to understand factors influencing real-world industrial-scale AM process emissions and exposures.

Generation of Reactive Oxygen Species Contributes to the Development of Carbon Black Cytotoxicity to Vascular Cells

  • Lee, Jong-Gwan;Noh, Won-Jun;Kim, Hwa;Lee, Moo-Yeol
    • Toxicological Research
    • /
    • v.27 no.3
    • /
    • pp.161-166
    • /
    • 2011
  • Carbon black, a particulate form of pure elemental carbon, is an industrial chemical with the high potential of occupational exposure. Although the relationship between exposure to particulate matters (PM) and cardiovascular diseases is well established, the cardiovascular risk of carbon black has not been characterized clearly. In this study, the cytotoxicity of carbon black to vascular smooth muscle and endothelial cells were examined to investigate the potential vascular toxicity of carbon black. Carbon black with distinct particle size, N330 (primary size, 28~36 nm) and N990 (250~350 nm) were treated to A-10, rat aortic smooth muscle cells and human umbilical vein endothelial cell line, ECV304, and cell viability was assessed by lactate dehydrogenase (LDH) leakage assay. Treatment of carbon black N990 resulted in the significant reduction of viability in A-10 cells at 100 ${\mu}g$/ml, the highest concentration tested, while N330 failed to cause cell death. Cytotoxicity to ECV304 cells was induced only by N330 at higher concentration, 200 ${\mu}g$/ml, suggesting that ECV304 cells were relatively resistant to carbon black. Treatment of 100 ${\mu}g$/ml N990 led to the elevation of reactive oxygen species (ROS) detected by dichlorodihydrofluorescein (DCF) in A-10 cells. Pretreatment of antioxidants, N-acetylcysteine (NAC) and sulforaphane restored decreased viability of N990-treated A-10 cells, and N-acetylcysteine, but not sulforaphane, attenuated N990-induced ROS generation in A-10 cells. Taken together, present study shows that carbon black is cytotoxic to vascular cells, and the generation of reactive oxygen contributes to the development of cytotoxicity. ROS scavenging antioxidant could be a potential strategy to attenuate the toxicity induced by carbon black exposure.

Assessment of hazardous substances and workenvironment for cleanrooms of microelectronic industry (전자산업 청정실의 작업환경 및 유해물질농도 평가)

  • Chung, Eun-Kyo;Park, Hyun-Hee;Shin, Jung-Ah;Jang, Jae-Kil
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.19 no.3
    • /
    • pp.280-287
    • /
    • 2009
  • High-tech microelectronics industry is known as one of the most chemical-intensive industries. In Korea, Microelectronics industry occupied 38% of export and 16% of working employees work in microelectronics industry. But, chemical information and health hazards of high-tech microelectronics manufacturing are poorly understood because of rapid development and its penchant for secrecy. We need to investigate on chemical use and exposure control. We Site-visits to 6 high-tech microelectronics manufacturing company which have cleanroom work using over 1,000kg organic solvents (5 semi-conductor chips and its related parts company, 1 liquid crystal display (LCD)). We reviewed their data on chemical use and ventilation system, and measured TVOCs (Total Volatile Organic Compounds) and carbon dioxide concentration. All cleanroom air passed through hepa filters to acheive low particle levels and only 1 cleanroom uses carbon filters to minimize the organic solvents exposures In TVOC screening test, Cleanroom for semi-conductor chips and its related parts company with laminar down flow system (e.g. class 1~100) showed nondetectable level of TVOCs concentration, but Cleanroom for liquid crystal display (LCD) with conventional flow system (e.g. class 1,000~10,000) showed 327 ppm as TVOCs. Acetone concentration in cleanroom for Jig cleaning, LC Injection, Sealing processes were 18.488ppm (n=14), 49.762 ppm (n=15), 8.656 ppm (n=14) as arithmetric mean. Acetone concentration in cleanroom for LCD inspection process was 40ppm (n=55) as geometric mean, where the range was 7.8~128.7ppm and weakly correlated with ventilation rate efficiency(r=0.44, p<0.05). To control organic solvents in cleanrooms, chemical and carbon filters should be installed with hepa filters. Even though their volatile organic compounds concentration was not exceed to occupational exposure limits, considering of entrance limited cleanroom environment, long-term period exposure effects and adverse health effects of cleanroom worker need further reseach.

Biological monitoring of miners exposed to diesel exhaust using urinary 1-hydroxypyrene (디젤 연소물질에 노출된 광산 근로자에서 소변 중 1-hydroxypyrene을 이용한 생물학적 모니터링)

  • Lee, Jong Seong;Choi, Byung-Soon;Shin, Jae-Hoon;Shin, Yong Chul;Kim, Ki-Woong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.17 no.2
    • /
    • pp.144-152
    • /
    • 2007
  • Diesel vehicles are a significant source of fine carbon particle emissions including polynuclear aromatic hydrocarbons (PAHs). Urinary 1-hydroxypyrene (1-OHP) is firmly established as a useful biomarker of PAHs uptake in human. To investigate the exposure effect of PAHs in miners according to using diesel truck which was for transportation of ore, we measured urinary 1-OHP as the PAHs exposure biomarker, and analyzed the relationship between urinary 1-OHP concentration and using diesel truck. The study was performed on 118 workers (56 miners in factories using diesel truck, 62 miners in factories non-using diesel truck) and 21 controls. Urine samples were obtained at the end of shift on the survey day. There was no significance in comparison with the mean concentrations on urinary 1-OHP by age, BMI, work duration, smoking, drinking and ventilation type. But significant difference were found among urinary 1-OHP concentrations on factories according to using diesel truck (p=0.000). The urinary 1-OHP mean concentration on underground miners using diesel truck ($0.54{\mu}mol/mol$ creatinine) was higher than those of surface miners using diesel truck ($0.33{\mu}mol/mol$ creatinine, p=0.028), underground miners non-using diesel truck ($0.32{\mu}mol/mol$ creatinine, p=0.001) and controls ($0.22{\mu}mol/mol$ creatinine, p=0.000). In comparison with using status diesel truck, the urinary 1-OHP mean concentration of underground miners using diesel trucks was higher than those of other mine status. The study results would be beneficial to future environmental and biological studies of PAHs exposure to diesel exhaust in mines.

Photodegradation Characterization of Polyolefin Composite (폴리올레핀 복합소재의 UV 광열화 특성)

  • Weon, Jong-Il;Shin, Sei-Moon;Choi, Kil-Yeong
    • Applied Chemistry for Engineering
    • /
    • v.20 no.5
    • /
    • pp.511-516
    • /
    • 2009
  • Photodegradation characteristics of polyolefin composites were studied. Thermogravimetric analysis results suggest that the polyolefin blends used in this study have different amounts of talc. The mechanical behaviors of polyolefin blends, which experienced UV-irradiation in accordance with SAE J1960, are investigated using tensile and Izod impact tests. These results show that as the UV-exposure time increases, a significant drop in the elongation at break and impact strength at a low temperature are observed. This may be explained by the decreases in elastic energy derived from the scission of polymer molecular chains and the low density of entanglement after UV- photodegradation. Scanning electron microscopy observations indicate that no crack and surface damage are observed, while the additional talc particles are exposed, on the UV-exposed surfaces. The exposure of talc particles may be responsible for the discoloration of UV-exposed polyolefin blend surface. Observation using Fourier transform infrared spectroscopy (FT-IR) confirms the presence of photodegradation on the surface of UV-exposed polyolefin blend.

A Comparison between the Performance Degradation of 3T APS due to Radiation Exposure and the Expected Internal Damage via Monte-Carlo Simulation (방사선 노출에 따른 3T APS 성능 감소와 몬테카를로 시뮬레이션을 통한 픽셀 내부 결함의 비교분석)

  • Kim, Giyoon;Kim, Myungsoo;Lim, Kyungtaek;Lee, Eunjung;Kim, Chankyu;Park, Jonghwan;Cho, Gyuseong
    • Journal of Radiation Industry
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • The trend of x-ray image sensor has been evolved from an amorphous silicon sensor to a crystal silicon sensor. A crystal silicon X-ray sensor, meaning a X-ray CIS (CMOS image sensor), is consisted of three transistors (Trs), i.e., a Reset Transistor, a Source Follower and a Select Transistor, and a photodiode. They are highly sensitive to radiation exposure. As the frequency of exposure to radiation increases, the quality of the imaging device dramatically decreases. The most well known effects of a X-ray CIS due to the radiation damage are increments in the reset voltage and dark currents. In this study, a pixel array of a X-ray CIS was made of $20{\times}20pixels$ and this pixel array was exposed to a high radiation dose. The radiation source was Co-60 and the total radiation dose was increased from 1 to 9 kGy with a step of 1 kGy. We irradiated the small pixel array to get the increments data of the reset voltage and the dark currents. Also, we simulated the radiation effects of the pixel by MCNP (Monte Carlo N-Particle) simulation. From the comparison of actual data and simulation data, the most affected location could be determined and the cause of the increments of the reset voltage and dark current could be found.

A Study on the Total, Particle Size-Selective Mass Concentration of Airborne Manganese, and Blood Manganese Concentration of Welders in a Shipbuilding Yard (조선업 용접작업자의 공기 중 총 망간 및 입경별 망간 농도와 혈중 망간농도에 관한 연구)

  • Park, Jong Su;Kim, Pan Gyi;Jeong, Jee Yeon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.4
    • /
    • pp.472-481
    • /
    • 2015
  • Objectives: Welding is a major task in shipbuilding yards that generates welding fumes. A significant amount of welding in shipbuilding yards is done on steel. Inevitably, manganese is present in the base metals being joined and the filler wire being used and, consequently, in the fumes to which workers are exposed. The objective of this work was to characterize manganese exposure associated with work area, total and particle size-selective mass concentration, and compare the mass concentrations obtained using a three-piece cassette sampler, size-selective impactor sampler and blood manganese concentrations. Materials: All samples were collected from the main work areas at one shipbuilding yard. We used a three piece cassette sampler and the eight stage cascade impactor sampler for the airborne manganese mass concentration of total and all size fractions, respectively. In addition, we used the results of health examination of workers sampled for airborne manganese. Results: The oder of high concentration of airborne manganese in shipbuilding processes was as follows; block assembly, block erection, outfitting installation, steel cutting, and outfitting preparation. The percentages of samples that exceeded the OES of the ministry of employment and labor by the cassette sampling method was 12.5%, however 59.1% of sampled workers by the impactor sampling method exceeded the TLV of the ACGIH. Conclusions: Even though the manganese concentrations in blood of workers exposed to higher airborne manganese concentration were higher than among those exposed to lower concentrations, there was no difference in blood manganese concentrations among work duration. The data analyzed here by characterizing size-selective mass concentrations indicates that the inhaled manganese of welders in shipbuilding yards could be mostly manganese-containing respirable particle sizes.

Development and Performance Evaluation of Aerosol Generator of MWCNTs for Inhalation Toxicology (흡입 독성 평가를 위한 다중벽 탄소나노튜브의 에어로졸 발생장치 개발 및 성능 평가)

  • Lee, Gun-Ho;Jeon, Ki Soo;Yu, Il Je;Ahn, Kang-Ho
    • Particle and aerosol research
    • /
    • v.9 no.4
    • /
    • pp.231-238
    • /
    • 2013
  • Carbon nanotubes (CNTs) are one of the nanomaterials that were discovered by Iijima in 1991 for the first time. CNTs have long cylindrical and axi-symmetric structures. CNTs are made by rolling graphene sheets. Because of their large length-to-diameter ratio, they are called nanotubes. CNTs are categorized as single-walled carbon nanotubes (SWCNTs) or multi-walled carbon nanotubes (MWCNTs) based on the shell structures. CNTs are broadly used in various fields, such as scanning probe microscopy, ultra fine nano balance and medicine, due to their extraordinary thermal conductivity, electrical and mechanical properties. Because long, straight CNTs have the same shape as asbestos, which cause cancer in cells lining the lung, there have been many studies on the effects of MWCNTs on human health that have been conducted. Stable atomization of CNTs is very important for the estimation of inhalation toxicity. In the present study, electro-static assisted axial atomizer (EAAA), which is the instrument that uses MWCNTs and aerosolizes them by transforming the single fiber shape using ultrasonic dispersion and electric field, was invented. EAAA consists of a ultrasonic bath for dispersion of MWCNTs and a particle generator for atomizing single fibers. The performance evaluation was conducted in order to assess the possibilities of 6-hour straight atomization with stability, which is the suggested exposure time in a day for the estimation of inhalation toxicity.

Influence of Filler Particle Size on Behaviour of EPDM Rubber for Fuel Cell Vehicle Application under High-Pressure Hydrogen Environment (수소전기차용 EPDM 고무의 충전재 입자 크기별 고압 수소 환경에서의 거동 연구)

  • KIM, KEEJUNG;JEON, HYEONG-RYEOL;KANG, YOUNG-IM;KIM, WANJIN;YEOM, JIWOONG;CHOI, SUNG-JOON;CHO, SUNGMIN
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.5
    • /
    • pp.453-458
    • /
    • 2020
  • In this study, ethylene-propylene-diene monomer (EPDM) rubbers reinforced with various particle size of carbon black were prepared and tested. We followed recently published CSA/ANSI CHMC2 standard "the test methods for evaluating material compatibility in compressed hydrogen applications-polyemr". Measurement of change in hardness, tensile strength and volume were performed after exposure to maximum operating pressure, 87.5 MPa, for 168 hours (1 week). Once EPDM was exposed to high-pressure hydrogen, the samples experience volume increase and degradation of the physical properties. Also, after the dissolved hydrogen was fully eliminated from the specimens, the hardness and the tensile properties were not recovered. The rubber reinforced with smaller sizes of carbon black particles showed less volume expansion and decrease of physical properties. As a result, smaller particle size of carbon black filler led to more resistance to high-pressure hydrogen.

The Study on the Level of Air Pollution at Four Department Stores in Pusan Area (부산지역 4개 백화점의 공기오염도에 관한 조사연구)

  • Moon, D.H.;Rhee, HW.;Lee, C.U.
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.1 no.2
    • /
    • pp.164-180
    • /
    • 1991
  • For the purpose of contributing to the promotion of health of the employees working at the same kind of department store or similar type of business and the people utilizing them and preparing the basic data for the establishment of mangagement measure by assessing the level of air pollusion at indoor and outodoor of four department store among the distribution service business in Pusan area, authors measured the concentration of sulfur dioxide, nitrogen dioxide, formaldehyde and total suspanded particle according to the measuring height of variable at indoor and outodoor from Aug. 1990. to sep. an. d Jan, 1991 to Feb.: for each two months in summer and winter, and studied by dividing the variable factor into atmospheric factor (temperature, humidity and air velociy) The results are as follows ; 1. The mean concentration of air pollutants at indoor to total subjects was nitrogen dioxide 31.1ppb, sulfur dioxide 51.7ppb, formaldehyde 162.lppb and total suspanded particle $67.7{\mu}g/m^3$, and it was higher in winter than in summer (P>0.05) 2. The mean concentration of formaldehyde to total subjects was higher indoors than outdoors (P<0.001), in case of nitrogen dioxide there was no significant difference and sulfur dioxide and total suspanded particle were higher outdoors than indoors (P<0.05) 3. The concentration of nitrogen dioxide and sulfur dioxide proved to be a adverse correlation, reducing with height. 4. According to the result questioned about the exposure concentration of pollutant and the general symptom caused by the pollutant, nitorgen dioxide and symptom proved to be a positive correlation (P<0.09).

  • PDF