• Title/Summary/Keyword: Particle erosion

Search Result 145, Processing Time 0.019 seconds

Effect of Sealing Treatment on Solid Particle Impingement Erosion of Al-Zn-Zr Thermal Spray Coating Layer (Al-Zn-Zr 용사코팅층의 고체입자 충돌 침식특성에 미치는 봉공처리의 영향)

  • Heo, Ho-Seong;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.68-76
    • /
    • 2022
  • Several technologies are employed to protect substrates from corrosion and erosion damage. In particular, arc thermal spray coating technology is widely used as anti-corrosive technology for steel and concrete structures and is applied to offshore plants and petrochemical and drilling facilities. In this investigation, solid particle impingement erosion experiments were performed on an arc thermal spraying-coated specimen using 85% Al-14% Zn-1% Zr wire rod in KR-RA steel. This study investigated the effect of fluorosilicone sealing on the erosion resistance characteristics of the thermal spray coating layer. The erosion rates of the thermal spray-coated and sealed specimens were 4.1×10-4 and 8.5×10-4, respectively. At the beginning of the experiment, the fluorosilicone sealant was almost destroyed by the impact of the solid particles. The destruction time for the coating layer was 10 minutes for the thermal spray-coated specimen and 13 minutes for the sealed specimens, indicating that the sealed specimens had better erosion resistance characteristics to solid particle impingement.

Effects of Oxidation and Hot Corrosion on the Erosion of Silicon Nitride

  • Kim, Jong Jip
    • Corrosion Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.136-139
    • /
    • 2005
  • The effect of oxidation and hot corrosion on the solid particle erosion was investigated for hot-pressed silicon nitride using as-polished, pre-oxidized and pre-corroded specimens by molten sodium sulfates. Erosion tests were performed at 22, 500 and $900^{\circ}C$ using angular silicon carbide particles of mean diameter $100{\mu}m$. Experimental results show that solid particle erosion rate of silicon nitride increases with increasing temperature for as-polished or pre-oxidized specimens in consistent with the prediction of a theoretical model. Erosion rate of pre-oxidized specimens is lower than that of as-polished specimens at $22^{\circ}C$, but it is higher at $900^{\circ}C$. Lower erosion rate at $22^{\circ}C$ in the pre-oxidized specimens is attributed due to the blunting of surface flaws, and the higher erosion rate at $900^{\circ}C$ is due to brittle lateral cracking. Erosion rate of pre-corroded specimens decreases with increasing temperature. Less erosion at $900^{\circ}C$ than at $22^{\circ}C$ is associated with the liquid corrosion products sealing off pores at $900^{\circ}C$ and the absence of inter-granular crack propagation observed at $22^{\circ}C$.

CFD Study on Particle Effect and Erosion in the Axial Compressor Blades and Shroud of Turbomachinery

  • Yoon J.S.;Chang Keun-Shik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.233-234
    • /
    • 2003
  • Fly ash enters axial compressor when a turbomachinery is operated in an adverse environment. We have numerically investigated erosion of the blade and shroud in the turbulent compressor passage flow under the influence of gas-particle two-phase interaction. There have appeared quasi-three dimensional calculations on this subject but not the complete three-dimensional gas-particle interaction as done in the present work. Lagrangian particle tracing technique is used on the base of parallel processing for efficient calculation. Accuracy of the present code is tested using the benchmark lPL nozzle. In the DFVLR compressor blades, we have shown that a large number of particles passing through the tip clearance make impact on the blade tip and on the shroud. Higher degree of erosion is resulted by the heavier particles due to the centrifugal force.

  • PDF

Computational Study on Particle Effect and Erosion in the Axial Compressor Blades and Shroud

  • Yoon J.S.;Chang Keun-Shik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.203-204
    • /
    • 2003
  • Fly ash enters axial compressor when a turbomachinery is operated in an adverse environment. We have numerically investigated erosion of the blade and shroud in the turbulent compressor passage flow under the influence of gas-particle two-phase interaction. There have appeared quasi-three dimensional calculations on this subject but not the complete three-dimensional gas-particle interaction as done in the present work. Lagrangian particle tracing technique is used on the base of parallel processing for efficient calculation. Accuracy of the present code is tested using the benchmark JPL nozzle. In the DFVLR compressor blades, we have shown that a large number of particles passing through the tip clearance make impact on the blade tip and on the shroud. Higher degree of erosion is resulted by the heavier particles due to the centrifugal force.

  • PDF

Influences of Gas and Solid Particle on the Cavitation Erosion-Corrosion (케비테이션 침식-부식에 미치는 기체와 고체입자의 영향)

  • Lim, Uh-Joh;Beak, Suk-Jong;Hwang, Jae-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.29 no.2
    • /
    • pp.124-131
    • /
    • 1993
  • Recently. with the rapid development in large sea water systems. there occurs much interest in the study of erosion-corrosion. In this study. the mild steel(SB41) was tested by using of a erosion-corrosion test apparatus with fountain-jet and was investigated under the environments of liquid, air-liquid 2 phase flow and solid particle-liquid 2 phase flow. Main results obtained are as follows : 1. The weight loss by corrosion-erosion in air-liquid 2 phase flow are more increased than that in only liquid solution. 2. Effect of air-liquid 2 phase flow on corrosion-erosion sensitivity becomes more sensitive in natural seawater than that in distilled water. 3. The corrosion potential by corrosion-erosion in air-liquid and solid particle-liquid 2 phase flow becomes noble than that of only liquid solution.

  • PDF

Solid Particle Erosion of CVD Diamond (CVD 다이아몬드 코팅의 고체입자 Erosion 특성)

  • 김종훈;임대순
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.69-73
    • /
    • 1997
  • Microwave Plasma assisted CVD (Chemical Vapor Deposition) and DC Plasma CVD were used to prepare thin and thick diamond film, respectively. Diamond coated silicon nitride and fiee standing diamond thick film were eroded by silicon carbide particles. The velocity of the solid particle was about 220m/sec. Phase transformation and the other crack formation were investigated by using Raman spectroscopy and microscopy.

  • PDF

A Study on Solid Particle Erosion Wear Characteristics of High Cr White Iron Hardfacing by Response Surface Method (반응표면분석에 의한 고 Cr 철계 오버레이 용접부의 분체침식마모 특성의 연구)

  • 이형근
    • Journal of Welding and Joining
    • /
    • v.20 no.4
    • /
    • pp.551-556
    • /
    • 2002
  • Solid particle erosion wear characteristics of high Cr white iron hardfacing were investigated using the erosion wear test method according with the ASTM G76-95. Wear experiments, where the blast angle, blast distance and blast pressure were selected as test variables, were planned and analyzed by response surface method (RSM to evaluate the wear loss statistically and quantitatively. The measured wear losses well coincided with the calculated ones by the experimental equation. The wear loss of high Cr cast iron hardfacing was increased with blasting pressure, but affected in a complicated way by the blasting angle and distance. Erosion wear of high Cr cast iron hardfacing could be well predicted by RSM analysis of wear variables.

Prediction of Erosion Rate in Passages of a Turbine Cascade with Two-Phase flow (터빈익렬 유로에서 2상 유동에 따른 삭마량 예측)

  • Yu, Man Sun;Kim, Wan Sik;Cho, Hyung Hee
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.301-308
    • /
    • 1999
  • The present study investigates numerically particle laden flow through compressor cascades and a rocket nozzle. Engines are affected by various particles which are suspending in the atmosphere. Especially in the case of aircraft aviating in volcanic, industrial and desert region including many particles, each components of engine system are damaged severely. That damage modes are erosion of compressor blading and rotor path components, partial or total blockage of cooling passage and engine control system degradation. Numerical prediction and experimental data, erosion rates are predicted for two materials - ceramic, soft metal - on compressor blade surface. Aluminum oxide ($Al_2O_3$) Particles included in solid rocket propelant make ablative the rocket motor nozzle and imped the expansion processes of propulsion. By the definition of particle deposition efficiency, characteristics of particles impaction are considered quantitatively Stoke number is defined over the various particle sizes and particle trajectories are treated by Lagrangian approach. Particle stability is considered by definition of Weber number in rocket nozzle and particle breakup and evaporation is simulated in a rocket nozzle.

  • PDF

Solid Particle Erosion Behavior of Inconel 625 Thermal Spray Coating Layers (Inconel 625 열용사 코팅 층의 고상입자 침식 거동)

  • Park, Il-Cho;Han, Min-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.4
    • /
    • pp.521-528
    • /
    • 2021
  • In this study, to repair damaged economizer fin tubes on ships, sealing treatment was performed after applying arc thermal spray coating technology using Inconel 625. A solid particle erosion (SPE) experiment was conducted according to ASTM G76-05 to evaluate the durability of the substrate, thermal spray coating (TSC), and thermal spray coating+sealing treatment (TSC+Sealing) specimens. The surface damage shape was observed using a scanning electron microscope and 3D laser microscope, and the durability was evaluated through the weight loss and surface roughness analysis. Consequently, the durability of the substrate was superior to that of TSC and TSC+Sealing, which was believed to be owing to numerous pore defects in the TSC layer. In addition, the mechanism of solid particle erosion damage was accompanied by plastic deformation and fatigue, which were the characteristics of ductile materials in the case of the substrate, and the tendency of brittle fracture in the case of TSC and TSC+Sealing was confirmed.

Sedimentation in the lake catchments in South Korea

  • Orkhonselenge, A.;matsuoka, T.;Tanaka, Y.;Kashiwaya, K.;Kim, S.
    • The Korean Journal of Quaternary Research
    • /
    • v.19 no.1
    • /
    • pp.41-46
    • /
    • 2005
  • This study discusses the soil erosion on hillslopes and sediment deposition in lakes within catchments in South Korea. In order to determine seasonal variations of sedimentation in Yeongcheon and Seondong lakes, the sediment traps were set in the deep part of both lakes and lake sediments have been sampledmonthly from July 2004 to August 2005. Some properties such as highmineral content, fine particle size and high particle density in the Yeongcheon Lake indicate intensive soil erosion, sediment transportation and deposition throughout the catchment for a long time. The high sediment yield in the Seondong Lake is related with higher weathering intensity and extreme soil erosion by running water due to higher seasonal rainfall amount. Rates of erosion and sedimentation in the Seondong Lake are estimated to be higher than those of the Yeongcheon Lake, suggesting that the Seondong Lake is associated with higher precipitation, smaller catchment area, and extreme soil vulnerability to ephemeral erosion by overland flow during the heavy rainfall event. Consequently, both catchments are characterized by different erosion and sedimentation processes, as well as different geomorphic factors (bedrock, soil structure, rainfall intensity and catchment area).

  • PDF