• Title/Summary/Keyword: Particle density

Search Result 1,507, Processing Time 0.043 seconds

Fine Particle Classification and Dewatering of Tailing Using Hydrocyclone (습식사이클론을 이용한 광물찌꺼기의 정밀분급과 탈수)

  • Kim, Jonggeol;Yoo, Kyoungkeun;Choe, Hongil;Choi, Uikyu;Park, Jayhyun;Alorro, Richard Diaz
    • Resources Recycling
    • /
    • v.24 no.4
    • /
    • pp.56-60
    • /
    • 2015
  • Fine particle classification was performed using products obtained from primary classification process after flotation for efficient application of tailing. The cut size increased with decreasing input pressure from 0.1 MPa to 0.3 MPa and increasing pulp density from 5% to 15% using 2-inch hydrocyclone. The median sizes of overflow and underflow were $6.56{\mu}m$ and $55.45{\mu}m$, respectively at 0.3 MPa with 5% pulp density. The imperfection became closed to ideal separation with increasing the pulp density and decreasing the input pressure. The water content decreased with increasing the pulp density, but the effect of input pressure could be ignored. The water content of underflow was 27.9% at 0.3 MPa with 15% pulp density.

Using grain size to predict engineering properties of natural sands in Pakistan

  • Aziz, Mubashir
    • Geomechanics and Engineering
    • /
    • v.22 no.2
    • /
    • pp.165-171
    • /
    • 2020
  • Laboratory determination of strength and deformation behavior of clean sands and gravels has always been challenging due to the difficulty in obtaining their undisturbed samples. An alternative solution to this problem is to develop correlations between mechanical properties of cohesionless soils and their gradation characteristics. This study presents database of 3 natural sands with 11 varying particle size gradation curves to allow investigating relationships between mean particle size, maximum and minimum void ratio, relative density and shear strength of the test soils. Direct shear tests were performed at relative densities of 50, 75 and 95% to explore the effects of gradation and density on the angle of internal friction of the modeled sand samples. It is found that the mean grain size D50 bears good correlations with void ratio range (emax - emin) and peak angle of internal friction 𝜙'peak. The generated regression models are in good agreement with published literature and can be considered as reliable for natural sands in Pakistan. These empirical correlations can save considerable time and efforts involved in laboratory and field testing.

A Study for Dispersive Action on The Solid Particle by Stochastic Model (I) (스토캐스틱 모델 ( Stochastic Model ) 에 의한 고체입자상 의 산란작용 에 대한 연구 I)

  • 맹주성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.6 no.4
    • /
    • pp.308-314
    • /
    • 1982
  • An experimental study has been made for the dispersion phenomena by a stochastic model in a turbulent pipe flow. Local instantaneous passage of suspended solid particles were recorded in two dimensions, employing a periscopic system coupled vidicon camera. Probability density of passage was calculated. Second moment shows qualitatively that dispersive action is dependent on particle's geometric characteristics in vertical pipe flow. In case that density of the solid particles is larger than that of liquid, particles have a tendency to approach from the center of pipe to the wall, and in the contrary case the approach the center of pipe. It seems that there exists a field of radial accelerations, centrifugal or centripetal according to the sign of density difference between two phases.

Development of Algorithm for Passenger Flow Analysis based on DEM (DEM에 기초한 여객 유동 해석 알고리즘 개발)

  • Nam Seong-Won
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.4
    • /
    • pp.337-341
    • /
    • 2005
  • Algorithm for passenger flow analysis based on DEM(Discrete Element Method) is newly developed. In the new algorithm, there are many similarity between multi phase flow and passenger flow. The velocity component of 1st phase corresponds to the direction vector of cell, each particle to each passenger, volume fraction to population density and the momentum equation of particle to the walking velocity equation of passenger, etc. And, the walking velocity of passenger is also represented by the function of population density. Key algorithms are developed to determine the position of passenger, population density and numbering to each passenger, To verify the effectiveness of new algorithm, passenger flow analysis for simple railway station model is conducted. The results for passenger flow in the model station are satisfying qualitatively and quantitatively.

An Investigation of Lattice Boltzmann Multi-phase Model and it Application (래티스볼츠만 다상류 모델의 검토 및 응용)

  • Kang, Ho-Keun;Ahn, Soo-Whan
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.269-270
    • /
    • 2006
  • A finite difference lattice Boltzmann model which allows us to simulate gas-liquid two-phase flows with large density difference, for instance, 800 times for air and water is considered. Two-particle model is used and the density difference is introduced by changing the acceleration according to the fluid density. Numerical measurement of surface tension agrees well with theoretical predictions. Simulations of two-phase phenomenon for phase-transition is carried out, showing applicability of the model for two-phase flows. The two-dimensional cavitating flow around a board set up in the fluid way is also simulated. As a result, it was confirmed that the FDLB method with two-particle model was effective in numerical simulation of cavitating flow and the bubble periodically grew up at the low pressure area behind the board, in which the fluid condition was influenced by the cavitation number.

  • PDF

A Study on the Mechanical Properties of the Board Composed of Wood Particle and Steel Wire - Focusing on Bending Strength - (목재(木材)파아티클과 철선복합(鐵線複合)보오드의 기계적(機械的) 성질(性質)에 관(關)한 연구(硏究) - 휨강도를 중심으로 -)

  • Park, Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.9-17
    • /
    • 1990
  • When manufacturing beam by laminating particleboards, the mechanical properties of particleboad-laminated beam would be also improved if the properties, especially mechanical properties of particleboad be reinforced. In this study, steel wires were used to reinforce particleboard. This study was carried out to obtain the basic mechanical properties of the board composed of wood particle and steel wires, focusing on bending strength which is the important factors in laminated beam and it was tried to estimate the relationship between the properties of the particleboard-laminated beam. and the proportion of steel wires to wood particles in particleboards. The result obtained can be summarized as follows: 1. The more steel wires used in boards, the higher value of modulus of rupture in bending was obtained, For example. the density 5 board composed of 14 numbers of steel wires showing 55% improved value than control board. 2. The board with lower density was also made better in higher value of elasticity, the density 0.5 board with 14 numbers of steel wires improved by 170%, the density 0.6 board by 86%, the 0.7 board by 37% and the 0.8 board by 26%. 3. The work to maximum load was improved with more steel wires. for example, the density 0.8 board with 14 numbers of steel wires improved by 31%.

  • PDF

Effect of Rice Straw Steaming Time and Mixing Ratio between Acacia mangium Willd Wood and Steamed Rice Straw on the Properties of the Mixed Particleboard

  • Tran, Van Chu;Le, Xuan Phuong
    • Journal of Forest and Environmental Science
    • /
    • v.31 no.2
    • /
    • pp.119-125
    • /
    • 2015
  • This study examined the effects of rice straw steaming time and mixing ratio between rice straw and wood particle on the properties of mixed particle board from Acacia mangium Willd wood and rice straw. Rice straw and Acacia mangium Willd wood were collected in Hanoi, Vietnam. The particle board was three-layer particle board with the structural ratio of 1:3:1. The thickness, density and board size of the particle board were 18 mm, $0.7g/cm^3$, and $800{\times}800{\times}18$ (mm, including trimming), respectively. A resin mixture between commercial Urea-formaldehyde (U-F) adhesive and methylene diphenyl isocyanate (MDI) adhesive was used with a dosage of 12% for the core layer and 14% for the surface layer. In this experimental design, the steaming time for rice straw was 15, 30, 45, 60, and 75 minutes at $100^{\circ}C$. The rice straw-wood mixing ratio was 10, 20, 30, 40, and 50%. The results showed that both mixing ratio and steaming time affect the properties of the particleboard, but the mixing ratio has a stronger impact. A higher mixing ratio and a longer steaming time resulted in a better quality of particleboard. The optimal steaming time for rice straw was 46.12 minutes with the straw-wood mixing ratio of 29.85% with the following characteristics of the particle board: the modulus of rupture (MOR) of 14.64 MPa, internal bond strength (IB) of 0.382 MPa, thickness swelling (TS) of 8.83%, and board density of $0.7-0.7g/cm^3$.

The Characteristics of Elutriation with Gaussian Particle Size Distributions in a gas-solid fluidized bed (기-고 유동층에서 Gaussian 분포 입자군의 표준편차에 따른 유출 특성)

  • Jang, Hyun-Tae;Cha, Wang-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3274-3279
    • /
    • 2009
  • The elutriation characteristics of particle size distribution were investigated in a gas-solid fluidized bed. Experiments were carried out with the mulit-sized particles of Gaussian distributions. The elutriation rate constant obtained from the experiment was correlated with the standard deviation of particle size and the dimensionless group of the velocity ratio. The standard deviation of pressure fluctuation, mean pressure, major frequency and power spectrum density function were calculated by pressure fluctuation properties. Size distribution of elutriated particles and pressure fluctuations were measured for the particle size distribution of particle system depended largrly on the size distribution. Characteristics of fluidization and elutriation were greatly influenced by the particle size distribution and these characteristics could be interpreted with pressure fluctuation properties.

Studies on Thickness Swelling Mechanism of Wood Particle-Polypropylene Fiber Composite by Scanning Electron Microscopy

  • Lee, Chan Ho;Cha, Jae Kyung;Eom, Young Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.48-58
    • /
    • 2002
  • This study was carried out through scanning electron microscopy to elucidate the mechanism of thickness swelling in wood particle-polypropylene composite which is a typical way of using wood and plastic materials. For this purpose, control particleboards and nonwoven web composites from wood particle and polypropylene fiber formulations of 100:0, 70:30, 60:40, and 50:50 were manufactured at target density levels of 0.5, 0.6, 0.7, and 0.8 g/cm3. Their water absorption and thickness swelling were tested according to ASTMD 1037-93 (1995). To elucidate thickness swelling mechanism of composite through the observation of morphological change of internal structures, the specimens before and after thickness swelling test by 24-hour immersion in water were used in scanning electron microscopy. From the scanning electron microscopy, thickness swelling of composite was thought to be caused by the complicated factors of degree of built-up internal stresses by mat compression and/or amount of wood particles encapsulated with molten polypropylene fibers during hot pressing. In the composites with wood particle contents of 50 to 60% at target densities of 0.5 to 0.8 g/cm3 and with wood particle content of 70% at target densities of 0.5 to 0.7 g/cm3, thickness swellings seemed to be largely dependent upon the restricted water uptake by encapsulated wood particles with molten polypropylene fibers. Thickness swelling in the composite with wood particle content of 70% at target density of 0.8 g/cm3, however, was thought to be principally dependent upon the increased springback phenomenon by built-up internal stresses of compressed mat.

Performace of a Cyclone and an impactor Using Monodisperse and Polydisperse Particles (단분산 입자와 다분산 입자를 이용한 싸이클론 및 임팩터의 성능평가)

  • Im Gyeong-Su;Lee Gyu-Won
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2001.11a
    • /
    • pp.101-102
    • /
    • 2001
  • Monodisperse aerosols containing spherical particles of known size, shape and density are the most widely used to calibrate particle-size measuring instruments and to determine the effects of particle size on the sampling device. However, these tests are time-consuming because monodisperse aerosols with different particle sizes are generated and tested in a series of experiments. Polydisperse aerosols may be used to determine the calibration or to simulate equipment under controlled laboratory condition. (omitted)

  • PDF