• Title/Summary/Keyword: Particle angularity

Search Result 12, Processing Time 0.016 seconds

Experimental and numerical studies of the pre-existing cracks and pores interaction in concrete specimens under compression

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Marji, Mohammad Fatehi
    • Smart Structures and Systems
    • /
    • v.23 no.5
    • /
    • pp.479-493
    • /
    • 2019
  • In this paper, the interaction between notch and micro pore under uniaxial compression has been performed experimentally and numerically. Firstly calibration of PFC2D was performed using Brazilian tensile strength, uniaxial tensile strength and biaxial tensile strength. Secondly uniaxial compression test consisting internal notch and micro pore was performed experimentally and numerically. 9 models consisting notch and micro pore were built, experimentally and numerically. Dimension of these models are 10 cm*1 cm*5 cm. the length of joint is 2 cm. the angularities of joint are $30^{\circ}$, $45^{\circ}$ and $60^{\circ}$. For each joint angularity, micro pore was situated 2 cm above the lower tip of the joint, 2 cm above the middle of the joint and 2 cm above the upper of the joint, separately. Dimension of numerical models are 5.4 cm*10.8 cm. The size of the cracks was 2 cm and its orientation was $30^{\circ}$, $45^{\circ}$ and $60^{\circ}$. Diameter of pore was 1cm which situated at the upper of the notch i.e., 2 cm above the upper notch tip, 2 cm above the middle of the notch and 2 cm above the lower of the notch tip. The results show that failure pattern was affected by notch orientation and pore position while uniaxial compressive strength is affected by failure pattern.

Evaluation of Cementation Effect of Jeju Coastal Sediments (제주연안 퇴적층의 고결 평가)

  • Lee, Moon-Joo;Kim, Jae-Jeong;Shim, Jai-Beom;Lim, Chai-Geun;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.11
    • /
    • pp.105-115
    • /
    • 2009
  • The Jeju sand was sampled from the beach in Jeju Island and its basic properties were analyzed. The cementation effect of Jeju coastal sediments was evaluated from in-situ tests such as SPT, CPT, and the Suspension-PS test. It was shown from test results that the Jeju sand has high extreme void ratios due to the angularity of grains and the intra-particle voids of hollow particles, similar to typical calcareous sands. From cone penetration test in the calibration chamber, it was found that the cone resistance($q_c$)-relative density($D_R$)-vertical effective stress(${\sigma}_v'$) relation of Jeju sand almost matches that of high compressible quartz sand. However, the $q_C-D_R-{\sigma}_v'$ correlation suggested for uncemented Jeju sand overestimates the relative density of coastal sediments of Jeju Island due to the cementation effect. From the analysis of the relation of cone resistance, N value, and small strain shear modulus measured in-situ, it seems reasonable to assume that the coastal sediment of Jeju Island is a naturally cemented one.