• Title/Summary/Keyword: Particle Tracking Velocimetry

Search Result 72, Processing Time 0.03 seconds

A Study on Simultaneous Analysis of Velocity and Density Distributions for High-Speed $CO_{2}$ Flow (고속 이산화탄소 유동장의 속도 및 밀도 동시 분석에 관한 연구)

  • Kim Yong-Jae;Ko Han Seo;Okamoto Koji
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.40-45
    • /
    • 2005
  • Velocity and density distributions of a high-speed and initial $CO_{2}$ jet flow have been analyzed simultaneously by a developed three-dimensional digital speckle tomography and a particle image velocimetry(PIV). Three high-speed cameras have been used for tomography and PIV since a shape of a nozzle for the jet flow is asymmetric and the initial flow is fast and unsteady, The speckle movements between no flow and $CO_{2}$ jet flow have been obtained by a cross-correlation tracking method so that those distances can be transferred to deflection angles of laser rays for density gradients. The three-dimensional density fields for the high-speed $CO_{2}$ jet flow have been reconstructed from the deflection angles by a real-time tomography method and the two-dimensional velocity fields have been calculated by a PIV method simultaneously and instantaneously.

  • PDF

A study on the effect of a underbody shape of rear part of a vehicle on pressure distribution of downstream using PIV (디지털 화상처리를 이용한 자동차 후부의 하면형상 이 압력분포에 미치는 영향)

  • Baek, Tae-Sil;Cho, Ki-Hyon;aek, Yee;Song, Dong-Young
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.1
    • /
    • pp.29-36
    • /
    • 2000
  • In order to reduce a aerodynamic drag of the rear, body, effects of rear lower end configuration of a vehicles were investigated by measuring the pressure distribution, visual flow phenomena by the use of digital image processing technique. The use of flow visualization in recent years has improved the general understanding of structure of complex flow and has yielded valuable information for analyzing fluid flow. As the results, it was found that the shape of rear lower part vehicles not only effected on the pressure distribution of the rear part of the vehicle but also difference of the flow phenomena.

  • PDF

4-Dimensional Particle Tracking Velocimetry (4D-PTV)

  • Doh Deog Hee;Hwnag Tae Gyu;Cho Yong Beom;Pyeon Yong Beom;Okamoto Koji
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.43-44
    • /
    • 2003
  • A 4D-PTV system was constructed. The measurement system consists of three high-speed high-definition cameras, Nd-Yag laser and a host computer. The GA-3D-PTV algorithm was used for completing the measurement system. A horizontal impinged jet flow was measured. The Reynolds number is about 40,000. Spatial temporal evolution of the jet flow was examined and physical properties such as spatial distributions of vorticity and turbulent kinetic energy were obtained with the constructed system.

  • PDF

Fall-Velocity Measurement Using Image Analysis Technique (영상해석기법을 이용한 침강속도 측정)

  • Yun, Byeong-Man;Yu, Gwon-Gyu;No, Yeong-Sin
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.4
    • /
    • pp.327-333
    • /
    • 2001
  • Particle tracking velocimetry (PTV) is introduced and applied to the fall-velocity measurement. The fall velocities of sediment particles were measured using PTV in the still water and compared with the values presented in the existing literature. Comparison shows that PTV measures the fall velocities accurately. This result enables the measurement of fall velocity in the turbulent flows, which was not possible with conventional methods.

  • PDF

Advanced Flow Visualization Techniques for Diagnosing Microscale Biofluid Flows (미세 생체유동 해석을 위한 첨단 유동가시화기법)

  • Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • Recently microscale biofluid flows have been receiving large attention in various research areas. However, most conventional imaging techniques are unsatisfactory due to difficulties encountered in the visualization of microscale biological flows. Recent advances in optics and digital image processing techniques have made it possible to develop several advanced micro-PIV/PTV techniques. They can be used to get quantitative velocity field information of various biofluid flows from visualized images of tracer particles. In this paper, as new advanced micro-PIV techniques suitable for biofluid flow analysis, the basic principle and typical applications of the time-resolved micro-PIV and X-ray micro-PIV methods are explained. As a 3D velocity field measurement technique for measuring microscale flows, holographic micro-PTV method is introduced. These advanced PIV/PTV techniques can be used to reveal the basic physics of various microscale biological flows and will play an important role in visualizing veiled biofluid flow phenomena, for which conventional methods have many difficulties to analyze.

Simultaneous measurement of velocity and temperature fields in micro-scale flow and its application to electrokinetic flow (마이크로 스케일 유동에서의 속도장 온도장 동시 측정 기법과 동전기 유동에의 적용)

  • Lee, Beom-Joon;Jin, Song-Wan;Kim, Young-Won;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2585-2590
    • /
    • 2007
  • In this paper, a technique of simultaneously measuring the velocity and the temperature in micro-scale flow is proposed. This method uses particle tracking velocimetry (PTV) for measuring the velocity and laser induced fluorescence (LIF) for measuring the temperature. To measure the accurate velocity and temperature, images for PTV and for LIF are separated by using two light sources and a shutter which is synchronized with a camera. By using only one camera, measurement system can be simplified and the error from complicate optical system can be minimized. Error analyses regarding the concentrations of fluorescent dye and particle and the light source fluctuation are also conducted. It is found that the error of the temperature and the velocity highly depends on the concentration of fluorescent particles which are used for PTV. This technique is applied to the simultaneous measurement of the velocity and the temperature in the electrokinetic flow. It is found that the velocity and temperature vary with the electric field strength and the concentration of electrolyte.

  • PDF

Simultaneous Measurement of Velocity and Temperature Fields in Micro-Scale Flow and Its Application to Electrokinetic Flow (마이크로 스케일 유동에서의 속도장 온도장 동시 측정 기법과 동전기 유동에의 적용)

  • Lee, Beom-Joon;Jin, Song-Wan;Kim, Young-Won;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.7 s.262
    • /
    • pp.644-652
    • /
    • 2007
  • In this paper, a technique of simultaneously measuring the velocity and the temperature in micro-scale flow is proposed. This method uses particle tracking velocimetry (PTV) for measuring the velocity and laser induced fluorescence (LIE) for measuring the temperature. To measure the accurate velocity and temperature, images for PTV and for LIE are separated by using two light sources and a shutter which is synchronized with a camera. By using only one camera, measurement system can be simplified and the error from complicate optical system can be minimized. Error analyses regarding the concentrations of fluorescent dye and particle and the light source fluctuation are also conducted. It is found that the error of the temperature and the velocity highly depends on the concentration of fluorescent particles which are used for PTV. This technique is applied to the simultaneous measurement of the velocity and the temperature in the electrokinetic flow. It is found that the velocity and temperature vary with the electric field strength and the concentration of electrolyte.

Micro Holographic PTV Analysis of Three-dimensional Dean Flows in a Curved Micro-tube (마이크로 홀로그래픽 PTV를 이용한 미세곡관 내부 Dean 유동의 3차원 유동해석)

  • Kim, Seok;Lee, Sang-Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.689-690
    • /
    • 2008
  • In the present study, a micro holographic PTV (HPTV) system was used to experimentally investigate the structure of 3D flow within a curved micro-tube with varying Dean number. The employed HPTV system incorporated a high-speed digital camera to measure the temporal evolution of the 3D velocity fields of micro-scale fluid flows. With increasing Dean number, flow in the curved tube is transformed from a steady flow to a secondary flow with two counter-rotating vortices. In this study, to analyze the 3D flow characteristics in the curved section of tube at a high Dean number, the trajectories of fluid particles were obtained experimentally using the whole 3D velocity field data obtained by the micro HPTV technique. The mean velocity field distribution was then obtained by ensemble averaging the instantaneous velocity fields. These results would be helpful in the design of various passages within micro-scale devices or micro-chips and in understanding the mixing phenomena that occur in curved conduits along the trajectories of fluid particles.

  • PDF

A Study on the Internal Flow Characteristics of a Very Low Specific Speed Centrifugal Pump by PTV (PTV 계측법에 의한 극저비속도 원심펌프의 내부유동특성에 관한 연구)

  • Choi, Young-Do;Matsui, Jun;Kurokawa, Junichi;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.1 s.34
    • /
    • pp.9-18
    • /
    • 2006
  • In the range of very low specific speed ($n_s<0.25$, non-dimensional), the performance of a centrifugal pump is much different from that of a centrifugal pump of normal ns and the efficiency of the pump drops rapidly with the decrease of $n_s$. In order to examine the reason of unstable performance characteristics of the very low $n_s$- centrifugal pump, the internal flow of the pump with a semi-open impeller is measured by a PTV(Particle Tracking Velocimetry) system. The purpose of this study is to make clear the internal flow characteristics and to obtain basic knowledge of the pump performance. The results show that the leakage flow through tip clearance give a strong effect on the flow pattern of impeller passage. A large vortex in the impeller passage and a strong reverse flow at impeller outlet are formed in the range of small flow rates, and the vortex and the reverse flow together reduce the absolute tangential velocity at the impeller outlet and cause the performance instability.

Flow Pattern Analysis of Artificial Valves Using High Speed Camera and Image Processing Technique (고속 사진기와 영상처리 기법을 이용한 인공판막의 흐름 분석.)

  • Lee, Dong-Hyeok;Kim, Hee-Chan;Seo, Soo-Won;Min, Byoung-Goo
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1993 no.11
    • /
    • pp.81-84
    • /
    • 1993
  • Artificial Heart Valve is the one of the most important artificial organ which has been implanted to many patients. The most important problems related to the artificial heart valve prosthesis are thrombosis and hemolysis. Usual method to test against this problem in vivo experiment, which is complex and hard work. Nowadays the request for In vitro Artificial Heart Valve testing system is increasing. Several papers has announced us flow pattern of Artificial Heart Valve is highly correlated with thrombosis and hemolysis. They usually gel flow pattern by LDA, it is also hard work and has narrow measuring region. In this reason we have determined to develop PTV(Particle Tracking Velocimetry). By using High-speed camera and image processing technique, flow pattern could be relatively easily obtained. Parachute and Bileaflet Artificial Heart Valve designed by SNU were testified.

  • PDF