• Title/Summary/Keyword: Particle Swarm Optimization Algorithm

Search Result 470, Processing Time 0.021 seconds

Feeder Reconfiguration Using Binary Coding Particle Swarm Optimization

  • Wu, Wu-Chang;Tsai, Men-Shen
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.488-494
    • /
    • 2008
  • This paper proposes an effective approach based on binary coding Particle Swarm Optimization (PSO) to identify the switching operation plan for feeder reconfiguration. The proposed method considers the advantages and disadvantages of existing particle swarm optimization method and redefined the operators of PSO algorithm to fit the application field of distribution systems. Shift operator is proposed to construct the binary coding particle swarm optimization for feeder reconfiguration. A typical distribution system of Taiwan Power Company is used in this paper to demonstrate the effectiveness of the proposed method. The test results show that the proposed method can apply to feeder reconfiguration problems more effectively and stably than existing method.

A Study on a Gain-Enhanced Antenna for Energy Harvesting using Adaptive Particle Swarm Optimization

  • Kang, Seong-In;Kim, Koon-Tae;Lee, Seung-Jae;Kim, Jeong-Phill;Choi, Kyung;Kim, Hyeong-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1780-1785
    • /
    • 2015
  • In this paper, the adaptive particle swarm optimization (APSO) algorithm is employed to design a gain-enhanced antenna with a reflector for energy harvesting. We placed the reflector below the main radiating element. Its back-radiated field is reflected and added to the forward radiated field, which could increase the antenna gain. We adopt the adaptive particle swarm optimization (APSO) algorithm, which improves the speed of convergence with a high frequency solver. The result shows that performance of the optimized design successfully satisfied the design goal of the frequency band, gain and axial ratio.

Swarm Intelligence-based Power Allocation and Relay Selection Algorithm for wireless cooperative network

  • Xing, Yaxin;Chen, Yueyun;Lv, Chen;Gong, Zheng;Xu, Ling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1111-1130
    • /
    • 2016
  • Cooperative communications can significantly improve the wireless transmission performance with the help of relay nodes. In cooperative communication networks, relay selection and power allocation are two key issues. In this paper, we propose a relay selection and power allocation scheme RS-PA-PSACO (Relay Selection-Power Allocation-Particle Swarm Ant Colony Optimization) based on PSACO (Particle Swarm Ant Colony Optimization) algorithm. This scheme can effectively reduce the computational complexity and select the optimal relay nodes. As one of the swarm intelligence algorithms, PSACO which combined both PSO (Particle Swarm Optimization) and ACO (Ant Colony Optimization) algorithms is effective to solve non-linear optimization problems through a fast global search at a low cost. The proposed RS-PA-PSACO algorithm can simultaneously obtain the optimal solutions of relay selection and power allocation to minimize the SER (Symbol Error Rate) with a fixed total power constraint both in AF (Amplify and Forward) and DF (Decode and Forward) modes. Simulation results show that the proposed scheme improves the system performance significantly both in reliability and power efficiency at a low complexity.

An Improved Cat Swarm Optimization Algorithm Based on Opposition-Based Learning and Cauchy Operator for Clustering

  • Kumar, Yugal;Sahoo, Gadadhar
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.1000-1013
    • /
    • 2017
  • Clustering is a NP-hard problem that is used to find the relationship between patterns in a given set of patterns. It is an unsupervised technique that is applied to obtain the optimal cluster centers, especially in partitioned based clustering algorithms. On the other hand, cat swarm optimization (CSO) is a new meta-heuristic algorithm that has been applied to solve various optimization problems and it provides better results in comparison to other similar types of algorithms. However, this algorithm suffers from diversity and local optima problems. To overcome these problems, we are proposing an improved version of the CSO algorithm by using opposition-based learning and the Cauchy mutation operator. We applied the opposition-based learning method to enhance the diversity of the CSO algorithm and we used the Cauchy mutation operator to prevent the CSO algorithm from trapping in local optima. The performance of our proposed algorithm was tested with several artificial and real datasets and compared with existing methods like K-means, particle swarm optimization, and CSO. The experimental results show the applicability of our proposed method.

Design of 2-D IIR Digital Filters Based on a Particle Swam Optimization (Particle Swarm Optimization을 이용한 2차원 IIR 디지털필터의 설계)

  • Lee, Young-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.7
    • /
    • pp.1312-1320
    • /
    • 2009
  • This paper presents an efficient design method of 2-D infinite impulse response(IIR) digital filter based on a particle swarm optimization(PSO) algorithm. The design task is reformulated as a constrained minimization problem and is solved by our newly developed PSO algorithm. To ensure the stability of the designed 2-D IIR digital filters, a new stability strategy is embedded in the basic PSO algorithm. The superiority of the proposed method is demonstrated by several experiments. The results show that the approximation error of the resultant filters are better than those of the digital filters which designed by recently published filter design methods. The proposed design method can also obtain the stable2-D IIR digital filters.

Path Planning Method Using the the Particle Swarm Optimization and the Improved Dijkstra Algorithm (입자 군집 최적화와 개선된 Dijkstra 알고리즘을 이용한 경로 계획 기법)

  • Kang, Hwan-Il;Lee, Byung-Hee;Jang, Woo-Seok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.2
    • /
    • pp.212-215
    • /
    • 2008
  • In this paper, we develop the optimal path planning algorithm using the improved Dijkstra algorithm and the particle swarm optimization. To get the optimal path, at first we construct the MAKLINK on the world environment and then make a graph associated with the MAKLINK. The MAKLINK is a set of edges which consist of the convex set. Some of the edges come from the edges of the obstacles. From the graph, we obtain the Dijkstra path between the starting point and the destination point. From the optimal path, we search the improved Dijkstra path using the graph. Finally, applying the particle swarm optimization to the improved Dijkstra path, we obtain the optimal path for the mobile robot. It turns out that the proposed method has better performance than the result in [1] through the experiment.

Blind Audio Source Separation Based On High Exploration Particle Swarm Optimization

  • KHALFA, Ali;AMARDJIA, Nourredine;KENANE, Elhadi;CHIKOUCHE, Djamel;ATTIA, Abdelouahab
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2574-2587
    • /
    • 2019
  • Blind Source Separation (BSS) is a technique used to separate supposed independent sources of signals from a given set of observations. In this paper, the High Exploration Particle Swarm Optimization (HEPSO) algorithm, which is an enhancement of the Particle Swarm Optimization (PSO) algorithm, has been used to separate a set of source signals. Compared to PSO algorithm, HEPSO algorithm depends on two additional operators. The first operator is based on the multi-crossover mechanism of the genetic algorithm while the second one relies on the bee colony mechanism. Both operators have been employed to update the velocity and the position of the particles respectively. Thus, they are used to find the optimal separating matrix. The proposed method enhances the overall efficiency of the standard PSO in terms of good exploration and performance. Based on many tests realized on speech and music signals supplied by the BSS demo, experimental results confirm the robustness and the accuracy of the introduced BSS technique.

A modified particle swarm approach for multi-objective optimization of laminated composite structures

  • Sepehri, A.;Daneshmand, F.;Jafarpur, K.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.3
    • /
    • pp.335-352
    • /
    • 2012
  • Particle Swarm Optimization (PSO) is a stochastic population based optimization algorithm which has attracted attentions of many researchers. This method has great potentials to be applied to many optimization problems. Despite its robustness the standard version of PSO has some drawbacks that may reduce its performance in optimization of complex structures such as laminated composites. In this paper by suggesting a new variation scheme for acceleration parameters and inertial weight factors of PSO a novel optimization algorithm is developed to enhance the basic version's performance in optimization of laminated composite structures. To verify the performance of the new proposed method, it is applied in two multi-objective design optimization problems of laminated cylindrical. The numerical results from the proposed method are compared with those from two other conventional versions of PSO-based algorithms. The convergancy of the new algorithms is also compared with the other two versions. The results reveal that the new modifications inthe basic forms of particle swarm optimization method can increase its convergence speed and evade it from local optima traps. It is shown that the parameter variation scheme as presented in this paper is successful and can evenfind more preferable optimum results in design of laminated composite structures.

Maximum Power Point Tracking of Photovoltaic using Improved Particle Swarm Optimization Algorithm (개선된 입자 무리 최적화 알고리즘 이용한 태양광 패널의 최대 전력점 추적)

  • Kim, Jae-Jung;Kim, Chang-Bok
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.4
    • /
    • pp.291-298
    • /
    • 2020
  • This study proposed a model that can track MPP faster than the existing MPPT algorithm using the particle swarm optimization algorithm (PSO). The proposed model highly sets the acceleration constants of gbest and pbest in the PSO algorithm to quickly track the MPP point and eliminates the power instability problem. In addition, this algorithm was re-executed by detecting the change in power of the solar panel according to the rapid change in solar radiation. As a result of the experiment, MPP time was 0.03 seconds and power was 131.65 for 691.5 W/m2, and MPP was tracked at higher power and speed than the existing P&O and INC algorithms. The proposed model can be applied when a change in the amount of power is detected by partial shading in a Photovoltaic power plant with Photovoltaic connected in parallel. In order to improve the MPPT algorithm, this study needs a comparative study on optimization algorithms such as moth flame optimization (MFO) and whale optimization algorithm (WOA).

A Study on Wall Emissivity Estimation using RPSO Algorithm (RPSO 알고리즘을 이용한 벽면 방사율 추정에 관한 연구)

  • Lee, Kyun-Ho;Baek, Seung-Wook;Kim, Ki-Wan;Kim, Man-Young
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2476-2481
    • /
    • 2007
  • An inverse radiation analysis is presented for the estimation of the wall emissivities for an absorbing, emitting, and scattering media with diffusely emitting and reflecting opaque boundaries. In this study, a repulsive particle swarm optimization(RPSO) algorithm which is a relatively recent heuristic search method is proposed as an effective method for improving the search efficiency for unknown parameters. To verify the performance of the proposed RPSO algorithm, it is compared with a basic particle swarm optimization(PSO) algorithm and a hybrid genetic algorithm(HGA) for the inverse radiation problem with estimating the wall emissivities in a two-dimensional irregular medium when the measured temperatures are given at only four data positions. A finite-volume method is applied to solve the radiative transfer equation of a direct problem to obtain measured temperatures.

  • PDF