• Title/Summary/Keyword: Particle Swarm Optimization Algorithm

Search Result 470, Processing Time 0.023 seconds

Metaheuristic Optimization Techniques for an Electromagnetic Multilayer Radome Design

  • Nguyen, Trung Kien;Lee, In-Gon;Kwon, Obum;Kim, Yoon-Jae;Hong, Ic-Pyo
    • Journal of electromagnetic engineering and science
    • /
    • v.19 no.1
    • /
    • pp.31-36
    • /
    • 2019
  • In this study, an effective method for designing an electromagnetic multilayer radome is introduced. This method is achieved by using ant colony optimization for a continuous domain in the transmission coefficient maximization with stability for a wide angle of incidence in both perpendicular and parallel polarizations in specific X- and Ku-bands. To obtain the optimized parameter for a C-sandwich radome, particle swarm optimization algorithm is operated to give a clear comparison on the effectiveness of ant colony optimization for a continuous domain. The qualification of an optimized multilayer radome is also compared with an effective solid radome type in transmitted power stability and presented in this research.

PSO algorithm for fundamental frequency optimization of fiber metal laminated panels

  • Ghashochi-Bargh, H.;Sadr, M.H.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.5
    • /
    • pp.713-727
    • /
    • 2013
  • In current study, natural frequency response of fiber metal laminated (FML) fibrous composite panels is optimized under different combination of the three classical boundary conditions using particle swarm optimization (PSO) algorithm and finite strip method (FSM). The ply angles, numbers of layers, panel length/width ratios, edge conditions and thickness of metal sheets are chosen as design variables. The formulation of the panel is based on the classical laminated plate theory (CLPT), and numerical results are obtained by the semi-analytical finite strip method. The superiority of the PSO algorithm is demonstrated by comparing with the simple genetic algorithm.

The Security Constrained Economic Dispatch with Line Flow Constraints using the Hybrid PSO Algorithm (Hybrid PSO를 이용한 안전도를 고려한 경제급전)

  • Jang, Se-Hwan;Kim, Jin-Ho;Park, Jong-Bae;Park, June-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1334-1341
    • /
    • 2008
  • This paper introduces an approach of Hybrid Particle Swarm Optimization(HPSO) for a security-constrained economic dispatch(SCED) with line flow constraints. To reduce a early convergence effect of PSO algorithm, we proposed HPSO algorithm considering a mutation characteristic of Genetic Algorithm(GA). In power system, for considering N-1 line contingency, we have chosen critical line contingency through a process of Screening and Selection based on PI(performance Index). To prove the ability of the proposed HPSO in solving nonlinear optimization problems, SCED problems with nonconvex solution spaces are considered and solved with three different approach(Conventional GA, PSO, HPSO). We have applied to IEEE 118 bus system for verifying a usefulness of the proposed algorithm.

Meta-Heuristic Algorithm Comparison for Droplet Impingements (액적 충돌 현상기반 최적알고리즘의 비교)

  • Joo Hyun Moon
    • Journal of ILASS-Korea
    • /
    • v.28 no.4
    • /
    • pp.161-168
    • /
    • 2023
  • Droplet impingement on solid surfaces is pivotal for a range of spray and heat transfer processes. This study aims to optimize the cooling performance of single droplet impingement on heated textured surfaces. We focused on maximizing the cooling effectiveness or the total contact area at the droplet maximum spread. For efficient estimation of the optimal values of the unknown variables, we introduced an enhanced Genetic Algorithm (GA) and Particle swarm optimization algorithm (PSO). These novel algorithms incorporate its developed theoretical backgrounds to compare proper optimized results. The comparison, considering the peak values of objective functions, computation durations, and the count of penalty particles, confirmed that PSO method offers swifter and more efficient searches, compared to GA algorithm, contributing finding the effective way for the spray and droplet impingement process.

An Optimized Random Tree and Particle Swarm Algorithm For Distribution Environments

  • Feng, Zhou;Lee, Un-Kon
    • Journal of Distribution Science
    • /
    • v.13 no.6
    • /
    • pp.11-15
    • /
    • 2015
  • Purpose - Robot path planning, a constrained optimization problem, has been an active research area with many methods developed to tackle it. This study proposes the use of a Rapidly-exploring Random Tree and Particle Swarm Optimizer algorithm for path planning. Research design, data, and methodology - The grid method is built to describe the working space of the mobile robot, then the Rapidly-exploring Random Tree algorithm is applied to obtain the global navigation path and the Particle Swarm Optimizer algorithm is adopted to obtain the best path. Results - Computer experiment results demonstrate that this novel algorithm can rapidly plan an optimal path in a cluttered environment. Successful obstacle avoidance is achieved, the model is robust, and performs reliably. The effectiveness and efficiency of the proposed algorithm is demonstrated through simulation studies. Conclusions - The findings could provide insights to the validity and practicability of the method. This method makes it is easy to build a model and meet real-time demand for mobile robot navigation with a simple algorithm, which results in a certain practical value for distribution environments.

Weight optimization of coupling with bolted rim using metaheuristics algorithms

  • Mubina Nancy;S. Elizabeth Amudhini Stephen
    • Coupled systems mechanics
    • /
    • v.13 no.1
    • /
    • pp.1-19
    • /
    • 2024
  • The effectiveness of coupling with a bolted rim is assessed in this research using a newly designed optimization algorithm. The current study, which is provided here, evaluates 10 contemporary metaheuristic approaches for enhancing the coupling with bolted rim design problem. The algorithms used are particle swarm optimization (PSO), crow search algorithm (CSA), enhanced honeybee mating optimization (EHBMO), Harmony search algorithm (HSA), Krill heard algorithm (KHA), Pattern search algorithm (PSA), Charged system search algorithm (CSSA), Salp swarm algorithm (SSA), Big bang big crunch optimization (B-BBBCO), Gradient based Algorithm (GBA). The contribution of the paper isto optimize the coupling with bolted rim problem by comparing these 10 algorithms and to find which algorithm gives the best optimized result. These algorithm's performance is evaluated statistically and subjectively.

A new multi-stage SPSO algorithm for vibration-based structural damage detection

  • Sanjideh, Bahador Adel;Hamzehkolaei, Azadeh Ghadimi;Hosseinzadeh, Ali Zare;Amiri, Gholamreza Ghodrati
    • Structural Engineering and Mechanics
    • /
    • v.84 no.4
    • /
    • pp.489-502
    • /
    • 2022
  • This paper is aimed at developing an optimization-based Finite Element model updating approach for structural damage identification and quantification. A modal flexibility-based error function is introduced, which uses modal assurance criterion to formulate the updating problem as an optimization problem. Because of the inexplicit input/output relationship between the candidate solutions and the error function's output, a robust and efficient optimization algorithm should be employed to evaluate the solution domain and find the global extremum with high speed and accuracy. This paper proposes a new multi-stage Selective Particle Swarm Optimization (SPSO) algorithm to solve the optimization problem. The proposed multi-stage strategy not only fixes the premature convergence of the original Particle Swarm Optimization (PSO) algorithm, but also increases the speed of the search stage and reduces the corresponding computational costs, without changing or adding extra terms to the algorithm's formulation. Solving the introduced objective function with the proposed multi-stage SPSO leads to a smart feedback-wise and self-adjusting damage detection method, which can effectively assess the health of the structural systems. The performance and precision of the proposed method are verified and benchmarked against the original PSO and some of its most popular variants, including SPSO, DPSO, APSO, and MSPSO. For this purpose, two numerical examples of complex civil engineering structures under different damage patterns are studied. Comparative studies are also carried out to evaluate the performance of the proposed method in the presence of measurement errors. Moreover, the robustness and accuracy of the method are validated by assessing the health of a six-story shear-type building structure tested on a shake table. The obtained results introduced the proposed method as an effective and robust damage detection method even if the first few vibration modes are utilized to form the objective function.

Solving the Team Orienteering Problem with Particle Swarm Optimization

  • Ai, The Jin;Pribadi, Jeffry Setyawan;Ariyono, Vincensius
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.3
    • /
    • pp.198-206
    • /
    • 2013
  • The team orienteering problem (TOP) or the multiple tour maximum collection problem can be considered as a generic model that can be applied to a number of challenging applications in logistics, tourism, and other fields. This problem is generally defined as the problem of determining P paths, in which the traveling time of each path is limited by $T_{max}$ that maximizes the total collected score. In the TOP, a set of N vertices i is given, each with a score $S_i$. The starting point (vertex 1) and the end point (vertex N) of all paths are fixed. The time $t_{ij}$ needed to travel from vertex i to j is known for all vertices. Some exact and heuristics approaches had been proposed in the past for solving the TOP. This paper proposes a new solution methodology for solving the TOP using the particle swarm optimization, especially by proposing a solution representation and its decoding method. The performance of the proposed algorithm is then evaluated using several benchmark datasets for the TOP. The computational results show that the proposed algorithm using specific settings is capable of finding good solution for the corresponding TOP instance.

Prediction of Remaining Useful Life of Lithium-ion Battery based on Multi-kernel Support Vector Machine with Particle Swarm Optimization

  • Gao, Dong;Huang, Miaohua
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1288-1297
    • /
    • 2017
  • The estimation of the remaining useful life (RUL) of lithium-ion (Li-ion) batteries is important for intelligent battery management system (BMS). Data mining technology is becoming increasingly mature, and the RUL estimation of Li-ion batteries based on data-driven prognostics is more accurate with the arrival of the era of big data. However, the support vector machine (SVM), which is applied to predict the RUL of Li-ion batteries, uses the traditional single-radial basis kernel function. This type of classifier has weak generalization ability, and it easily shows the problem of data migration, which results in inaccurate prediction of the RUL of Li-ion batteries. In this study, a novel multi-kernel SVM (MSVM) based on polynomial kernel and radial basis kernel function is proposed. Moreover, the particle swarm optimization algorithm is used to search the kernel parameters, penalty factor, and weight coefficient of the MSVM model. Finally, this paper utilizes the NASA battery dataset to form the observed data sequence for regression prediction. Results show that the improved algorithm not only has better prediction accuracy and stronger generalization ability but also decreases training time and computational complexity.

Equivalent Circuit Modeling of Multiple Modes Underwater Acoustic Piezoelectric Transducer Using Particle Swarm Optimization Algorithm (미립자 집단 최적화 알고리즘을 이용한 다중모드 수중 음향 압전 트랜스듀서의 등가회로 모델링)

  • Lee, Jeong-Min;Lee, Byung-Hwa;Baek, Kwang-Ryul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.363-369
    • /
    • 2009
  • In this paper, an estimation method is presented to determine the equivalent circuit model of an underwater acoustic piezoelectric transducer with multiple resonant modes. A fitness function that includes the coupled resonant effects is proposed to minimize an error between the measured impedance of the transducer and the calculated impedance of the equivalent model. Unknown parameters of the equivalent circuit are estimated by using PSO algorithm. The proposed method is applied to an example transducer of the sandwich type with 3 resonances in the frequency band of interest. The analytical impedance of the estimated equivalent circuit model is compared with the measured impedance of the transducer and the validity of proposed method is verified.