• Title/Summary/Keyword: Particle Swarm Optimization(PSO)

Search Result 500, Processing Time 0.028 seconds

Multi-Grouped Particle Swarm Strategy for Multi-modal Optimization (Multi-modal 최적화를 위한 다중 그룹 Particle Swarm 전략)

  • Seo, Jang-Ho;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1026-1028
    • /
    • 2005
  • 본 논문에서는 PSO(Particle Swarm Optimization)에 기초하여 multi-modal 최적화를 위한 다중 그룹 Particle Swarm 최적화 알고리즘(MGPSO)을 제안하였다. 제안된 알고리즘은 PSO의 기본 특성을 유지하기 때문에 기존의 혼합형 타입의 최적화 방식에 비하여 빠른 수렴 시간을 가지며 구성방식이 간단하다. 여러 개의 피크를 가지는 테스트 함수를 통해 본 논문에서 제시한 알고리즘의 타당성을 입증하였으며, 영구자석 매입형 전동기의 최적 설계에 적용하여 그 유용성을 확인하였다.

  • PDF

Enhancement of Particle Swarm Optimization by Stabilizing Particle Movement

  • Kim, Hyunseok;Chang, Seongju;Kang, Tae-Gyu
    • ETRI Journal
    • /
    • v.35 no.6
    • /
    • pp.1168-1171
    • /
    • 2013
  • We propose an improvement of particle swarm optimization (PSO) based on the stabilization of particle movement (PM). PSO uses a stochastic variable to avoid an unfortunate state in which every particle quickly settles into a unanimous, unchanging direction, which leads to overshoot around the optimum position, resulting in a slow convergence. This study shows that randomly located particles may converge at a fast speed and lower overshoot by using the proportional-integral-derivative approach, which is a widely used feedback control mechanism. A benchmark consisting of representative training datasets in the domains of function approximations and pattern recognitions is used to evaluate the performance of the proposed PSO. The final outcome confirms the improved performance of the PSO through facilitating the stabilization of PM.

Optimization of the Parameter of Neuro-Fuzzy system using Particle Swarm Optimization (PSO를 이용한 뉴로-퍼지 시스템의 파라미터 최적화)

  • Kim Seung-Seok;Kim Yong-Tae;Kim Ju-Sik;Jeon Byeong-Seok
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.168-171
    • /
    • 2006
  • 본 논문에서는 Particle Swarm Optimization 기법을 이용한 뉴로-퍼지 시스템의 파라미터 동정을 실시한다. PSO의 학습 및 군집 특성을 이용하여 시스템을 학습한다. 유전 알고리즘과 같은 무작위 탐색법을 이용하며 하나의 해 군집에 대해 다수 객체들이 탐색하는 기법을 통하여 최적해 부분의 탐색성능을 높여 전체 모델의 학습성능을 개선하고자 한다. 제안된 기법의 유용성을 시뮬레이션을 통하여 보이고자 한다.

  • PDF

Charging Control Strategy of Electric Vehicles Based on Particle Swarm Optimization

  • Boo, Chang-Jin
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.455-459
    • /
    • 2018
  • In this paper, proposed a multi-channel charging control strategy for electric vehicle. This control strategy can adjust the charging power according to the calculated state-of-charge (SOC). Electric vehicle (EV) charging system using Particle Swarm Optimization (PSO) algorithm is proposed. A stochastic optimization algorithm technique such as PSO in the time-of-use (TOU) price used for the energy cost minimization. Simulation results show that the energy cost can be reduced using proposed method.

Implementation of PSO(Particle Swarm Optimization) Algorithm using Parallel Processing of GPU (GPU의 병렬 처리 기능을 이용한 PSO(Particle Swarm Optimization) 알고리듬 구현)

  • Kim, Eun-Su;Kim, Jo-Hwan;Kim, Jong-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.181-182
    • /
    • 2008
  • 본 논문에서는 연산 최적화 알고리듬 중 PSO(Particle Swarm Optimization) 알고리듬을 NVIDIA사(社)에서 제공한 CUDA(Compute Unified Device Architecture)를 이용하여 새롭게 구현하였다. CUDA는 CPU가 아닌 GPU(Graphic Processing Unit)의 다양한 병렬 처리 능력을 사용해 복잡한 컴퓨팅 문제를 해결하는 소프트웨어 개발을 가능케 하는 기술이다. 이 기술을 연산 최적화 알고리듬 중 PSO에 적용함으로써 알고리듬의 수행 속도를 개선하였다. CUDA를 적용한 PSO 알고리듬의 검증을 위해 언어 기반으로 프로그래밍하고 다양한 Test Function을 통해 시뮬레이션 하였다. 그리고 기존의 PSO 알고리듬과 비교 분석하였다. 또한 알고리듬의 성능 향상으로 여러 가지 최적화 분야에 적용 할 수 있음을 보인다.

  • PDF

Optimal Design for Hybrid Active Power Filter Using Particle Swarm Optimization

  • Alloui, Nada;Fetha, Cherif
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.3
    • /
    • pp.129-135
    • /
    • 2017
  • This paper introduces a design and a simulation of a hybrid active power filter (HAPF) for harmonics reduction given an ideal supply source. The synchronous reference frame method has been used here to identify the reference currents. The proposed HAPF uses a new artificial- intelligence technique called Particle Swarm Optimization (PSO) for tuning the parameters of a proportional and integral controller called PI-PSO. The PI-PSO controller is used to archive optimality for the DC-link voltage of the HAPF-inverter. The hysteresis non-linear current control method is used in this approach to compare the extracted reference and the actual currents in order to generate the pulse gate required for the HAPF. Results obtained by simulations with Matlab/Simuling show that the proposed approach is very flexible and effective for eliminating harmonic currents generated by the non-linear load with the HAPF based PSO tuning.

An Improvement of Particle Swarm Optimization with A Neighborhood Search Algorithm

  • Yano, Fumihiko;Shohdohji, Tsutomu;Toyoda, Yoshiaki
    • Industrial Engineering and Management Systems
    • /
    • v.6 no.1
    • /
    • pp.64-71
    • /
    • 2007
  • J. Kennedy and R. Eberhart first introduced the concept called as Particle Swarm Optimization (PSO). They applied it to optimize continuous nonlinear functions and demonstrated the effectiveness of the algorithm. Since then a considerable number of researchers have attempted to apply this concept to a variety of optimization problems and obtained reasonable results. In PSO, individuals communicate and exchange simple information with each other. The information among individuals is communicated in the swarm and the information between individuals and their swarm is also shared. Finally, the swarm approaches the optimal behavior. It is reported that reasonable approximate solutions of various types of test functions are obtained by employing PSO. However, if more precise solutions are required, additional algorithms and/or hybrid algorithms would be necessary. For example, the heading vector of the swarm can be slightly adjusted under some conditions. In this paper, we propose a hybrid algorithm to obtain more precise solutions. In the algorithm, when a better solution in the swarm is found, the neighborhood of a certain distance from the solution is searched. Then, the algorithm returns to the original PSO search. By this hybrid method, we can obtain considerably better solutions in less iterations than by the standard PSO method.

A Comparative Study on the PSO and APSO Algorithms for the Optimal Design of Planar Patch Antennas (평면형 패치 안테나의 최적설계를 위한 PSO와 APSO 알고리즘 비교 연구)

  • Kim, Koon-Tae;Kim, Hyeong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.11
    • /
    • pp.1578-1583
    • /
    • 2013
  • In this paper, stochastic optimization algorithms of PSO (Particle Swarm Optimization) and APSO (Adaptive Particle Swam Optimization) are studied and compared. It is revealed that the APSO provides faster convergence and better search efficiency than the conventional PSO when they are adopted to find the global minimum of a two-dimensional function. The advantages of the APSO comes from the ability to control the inertia weight, and acceleration coefficients. To verify that the APSO is working better than the standard PSO, the design of a 10GHz microstrip patch as one of the elements of a high frequency array antenna is taken as a test-case and shows the optimized result with 5 iterations in the APSO and 28 iterations in th PSO.

Comparative Study on Dimensionality and Characteristic of PSO (PSO의 특징과 차원성에 관한 비교연구)

  • Park Byoung-Jun;Oh Sung-Kwun;Kim Yong-Soo;Ahn Tae-Chon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.4
    • /
    • pp.328-338
    • /
    • 2006
  • A new evolutionary computation technique, called particle swarm optimization(PSO), has been proposed and introduced recently. PSO has been inspired by the social behavior of flocking organisms, such as swarms of birds and fish schools and PSO is an algorithm that follows a collaborative population-based search model. Each particle of swarm flies around in a multidimensional search space looking for the optimal solution. Then, Particles adjust their position according to their own and their neighboring-particles experience. In this paper, characteristics of PSO such as mentioned are reviewed and compared with GA which is based on the evolutionary mechanism in natural selection. Also dimensionalities of PSO and GA are compared throughout numeric experimental studies. The comparative studies demonstrate that PSO is characterized as simple in concept, easy to implement, and computationally efficient and can generate a high-quality solution and stable convergence characteristic than GA.

Improvement of Rejection Performance using the Lip Image and the PSO-NCM Optimization in Noisy Environment (잡음 환경 하에서의 입술 정보와 PSO-NCM 최적화를 통한 거절 기능 성능 향상)

  • Kim, Byoung-Don;Choi, Seung-Ho
    • Phonetics and Speech Sciences
    • /
    • v.3 no.2
    • /
    • pp.65-70
    • /
    • 2011
  • Recently, audio-visual speech recognition (AVSR) has been studied to cope with noise problems in speech recognition. In this paper we propose a novel method of deciding weighting factors for audio-visual information fusion. We adopt the particle swarm optimization (PSO) to weighting factor determination. The AVSR experiments show that PSO-based normalized confidence measures (NCM) improve the rejection performance of mis-recognized words by 33%.

  • PDF