• 제목/요약/키워드: Particle Swarm Optimization(PSO)

검색결과 500건 처리시간 0.031초

Implementation of a Particle Swarm Optimization-based Classification Algorithm for Analyzing DNA Chip Data

  • Han, Xiaoyue;Lee, Min-Soo
    • Genomics & Informatics
    • /
    • 제9권3호
    • /
    • pp.134-135
    • /
    • 2011
  • DNA chips are used for experiments on genes and provide useful information that could be further analyzed. Using the data extracted from the DNA chips to find useful patterns or information has become a very important issue. In this paper, we explain the application developed for classifying DNA chip data using a classification method based on the Particle Swarm Optimization (PSO) algorithm. Considering that DNA chip data is extremely large and has a fuzzy characteristic, an algorithm that imitates the ecosystem such as the PSO algorithm is suitable to be used for analyzing such data. The application enables researchers to customize the PSO algorithm parameters and see detail results of the classification rules.

개선된 PSO 알고리즘을 적용한 의전형 영구자석형 전동기의 최적 설계 (Optimal Design of Outer Rotor Type Interior Permanent Magnet Synchronous Motor using Improved Particle Swarm Optimization)

  • 이상엽;서장호;정현교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.62-64
    • /
    • 2008
  • 본 논문에서는 기존의 Particle Swarm Optimization (PSO) 알고리즘에 반발 속도 (Repulsion Velocity) 개념을 도입한 개선된 PSO 알고리즘을 제안하였다. 낮은 적합도를 가지는 지역을 멀리하는 성질을 모사한 것이 반발 속도의 개념이다. 반발 속도의 개념을 도입한 제안된 알고리즘은 기존의 알고리즘에 비해서, 더 좋은 수렴 특성을 가지고, 더 빠른 계산 특성을 가짐을 알 수 있었다. 시험 함수를 통해서 제안된 알고리즘의 검증을 수행하였고, 외전형 영구자석형 전동기의 최적화에 적용하여서 그 결과를 나타내었다.

  • PDF

Evaluation of concrete compressive strength based on an improved PSO-LSSVM model

  • Xue, Xinhua
    • Computers and Concrete
    • /
    • 제21권5호
    • /
    • pp.505-511
    • /
    • 2018
  • This paper investigates the potential of a hybrid model which combines the least squares support vector machine (LSSVM) and an improved particle swarm optimization (IMPSO) techniques for prediction of concrete compressive strength. A modified PSO algorithm is employed in determining the optimal values of LSSVM parameters to improve the forecasting accuracy. Experimental data on concrete compressive strength in the literature were used to validate and evaluate the performance of the proposed IMPSO-LSSVM model. Further, predictions from five models (the IMPSO-LSSVM, PSO-LSSVM, genetic algorithm (GA) based LSSVM, back propagation (BP) neural network, and a statistical model) were compared with the experimental data. The results show that the proposed IMPSO-LSSVM model is a feasible and efficient tool for predicting the concrete compressive strength with high accuracy.

Damage detection based on MCSS and PSO using modal data

  • Kaveh, Ali;Maniat, Mohsen
    • Smart Structures and Systems
    • /
    • 제15권5호
    • /
    • pp.1253-1270
    • /
    • 2015
  • In this paper Magnetic Charged System Search (MCSS) and Particle Swarm Optimization (PSO) are applied to the problem of damage detection using frequencies and mode shapes of the structures. The objective is to identify the location and extent of multi-damage in structures. Both natural frequencies and mode shapes are used to form the required objective function. To moderate the effect of noise on measured data, a penalty approach is applied. A variety of numerical examples including two beams and two trusses are considered. A comparison between the PSO and MCSS is conducted to show the efficiency of the MCSS in finding the global optimum. The results show that the present methodology can reliably identify damage scenarios using noisy measurements and incomplete data.

임베디드 시스템을 위한 PSO 기반의 군집화 알고리즘의 구현 (The implementation of PSO clustering Algorithm for Embedded Systems)

  • 맹보연;최옥주;이민수
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 춘계학술발표대회
    • /
    • pp.290-293
    • /
    • 2009
  • 바이오 칩 분석 시스템은 유전자와 실험의 두 축으로 이루어진 바이오 칩에서 자료를 추출하고 필요한 정보를 얻기 위해 데이터를 분석하는 시스템이다. 유전자 데이터를 효율적으로 분석할 수 있는 방법으로 바이오 칩 분석 시스템이 각광받으면서 데이터의 양과 종류가 방대해지고 메모리의 효율적인 사용과 이에 따른 속도 개선을 위해 임베디드 시스템이 필요해지고 있다. 이에 따라 본 연구에서는 임베디드 시스템을 위한 PSO 기반의 군집화 알고리즘을 구현하였다. 방대한 양의 유전자 데이터를 분석하기 위해 생태계 모방 알고리즘인 Particle Swarm Optimization 알고리즘과 비슷한 유전자의 분류를 위한 기법으로 군집화를 사용하여 유전자 데이터의 통합 분석 시스템을 구현, 사용자에게 더욱 효율적으로 정보를 제공한다. 본 논문에서는 방대한 양의 데이터의 최적화에 효율적인 생태계 모방 알고리즘 Particle Swarm Optimization 을 이용하여 데이터들을 군집화하는 알고리즘을 임베디드 시스템을 위해 구현한 방법을 기술하고 있다.

입자 군집 최적화 알고리즘 기반 다항식 신경회로망의 설계 (Design of Particle Swarm Optimization-based Polynomial Neural Networks)

  • 박호성;김기상;오성권
    • 전기학회논문지
    • /
    • 제60권2호
    • /
    • pp.398-406
    • /
    • 2011
  • In this paper, we introduce a new architecture of PSO-based Polynomial Neural Networks (PNN) and discuss its comprehensive design methodology. The conventional PNN is based on a extended Group Method of Data Handling (GMDH) method, and utilized the polynomial order (viz. linear, quadratic, and modified quadratic) as well as the number of node inputs fixed (selected in advance by designer) at Polynomial Neurons located in each layer through a growth process of the network. Moreover it does not guarantee that the conventional PNN generated through learning results in the optimal network architecture. The PSO-based PNN results in a structurally optimized structure and comes with a higher level of flexibility that the one encountered in the conventional PNN. The PSO-based design procedure being applied at each layer of PNN leads to the selection of preferred PNs with specific local characteristics (such as the number of input variables, input variables, and the order of the polynomial) available within the PNN. In the sequel, two general optimization mechanisms of the PSO-based PNN are explored: the structural optimization is realized via PSO whereas in case of the parametric optimization we proceed with a standard least square method-based learning. To evaluate the performance of the PSO-based PNN, the model is experimented with using Gas furnace process data, and pH neutralization process data. For the characteristic analysis of the given entire data with non-linearity and the construction of efficient model, the given entire system data is partitioned into two type such as Division I(Training dataset and Testing dataset) and Division II(Training dataset, Validation dataset, and Testing dataset). A comparative analysis shows that the proposed PSO-based PNN is model with higher accuracy as well as more superb predictive capability than other intelligent models presented previously.

PSO 알고리즘을 이용한 퍼지 Extreme Learning Machine 최적화 (Optimization of Fuzzy Learning Machine by Using Particle Swarm Optimization)

  • 노석범;왕계홍;김용수;안태천
    • 한국지능시스템학회논문지
    • /
    • 제26권1호
    • /
    • pp.87-92
    • /
    • 2016
  • 본 논문에서는 일반적인 신경회로망의 단점인 느린 학습속도를 획기적으로 개선한 네트워크인 Extreme Learning Machine과 전문가들의 언어적 정보들을 기술 할 수 있는 퍼지 이론을 접목한 퍼지 Extreme Learning Machine을 최적화하기 위하여 Particle Swarm Optimization 알고리즘을 이용하였다. 퍼지 Extreme Learning Machine의 활성화 함수를 일반적인 시그모이드 함수를 사용하지 않고, 퍼지 C-Means 클러스터링 알고리즘의 활성화 레벨 함수를 이용하였다. Particle Swarm Optimization 알고리즘과 같은 최적화 알고리즘을 통하여 퍼지 Extreme Learning Machine의 활성화 함수의 파라미터들을 최적화 한다. Particle Swarm Optimization과 같은 최적화 알고리즘을 통한 제안된 모델의 최적화 하고 최적화된 모델의 분류성능을 평가하기 위하여 다양한 머신 러닝 데이터 집합을 사용하여 평가한다.

Quantum-infusion 메커니즘을 이용한 분산형 입자군집최적화 알고리즘에 관한 연구 (A Study on Distributed Particle Swarm Optimization Algorithm with Quantum-infusion Mechanism)

  • 송동호;이영일;김태형
    • 한국지능시스템학회논문지
    • /
    • 제22권4호
    • /
    • pp.527-531
    • /
    • 2012
  • 본 논문에서는 종래의 PSO 알고리즘 성능저하의 주요 원인들 중 하나인 입자들의 조기수렴 현상을 개선한 DPSO-QI (Distributed PSO with quantum-infusion mechanism) 기법을 제안한다. DPSO-QI 알고리즘은 다음과 같은 두 가지 특징을 지닌다. 첫째, 분산형 구조의 PSO 기법을 도입한다. 이는 먼저 적절한 수의 입자들로 소그룹을 형성하고, 최적해 탐색에 필요한 다양한 정보의 교환이 각 소그룹 내에서만 이루어지도록 한 기법이다. 이러한 기법을 바탕으로 입자들의 탐색 다양성을 증대시킴으로서 조기수렴 현상을 감소시키는 효과를 달성할 수 있다. 둘째, 상기의 입자 소그룹에 Quantum-infusion (QI) 메커니즘에 기반 한 기법을 도입시킨다. 이를 통해 입자들의 전역 최적해 탐색 정밀도를 보다 향상시킬 수 있다. 끝으로 다양한 수치예제를 통하여 제안하는 새로운 PSO 기법이 종래의 방식들에 비해 매우 뛰어난 성능을 구현할 수 있음을 입증하고자 한다.

전기요금 절감용 ESS를 활용한 Particle Swarm Optimization 기반 Peak Shaving 제어 방법 (Particle Swarm Optimization-Based Peak Shaving Scheme Using ESS for Reducing Electricity Tariff)

  • 박명우;강모세;윤용운;홍선리;배국열;백종복
    • 전기전자학회논문지
    • /
    • 제25권2호
    • /
    • pp.388-398
    • /
    • 2021
  • 본 논문에서는 전기요금 절감용 ESS를 활용한 Particle swarm optimization(PSO) 기반 Peak shaving 제어 방법을 제안한다. 제안한 방식은 실제 부하와 예상되는 부하의 소비를 비교하여 피크 절감을 위해 ESS의 추가 유효전력값을 계산하여 입력을 더한다. 또한 추가로 증가시킨 유효전력을 보상하기 위해, 유효전력을 할당하는 과정을 수행하며 유효전력 할당치가 피크 부하에 영향을 주지 않도록 유효전력 할당 지점에 예상되는 부하의 평균을 최소화하는 최적화 해를 PSO를 통해 찾는다. 제안한 방식의 성능 검증을 위해 실제 부하 데이터와 예측 알고리즘을 반영하여 예측 오차가 적은 경우와 큰 경우의 사례 연구를 수행하였다. 사례 연구 수행 결과 제안한 방식을 전기요금 절감을 위한 충·방전 제어 방식과 같이 수행한 경우 예측 오차가 큰 경우에도 성공적으로 피크 부하 절감을 수행하였으며, 17.8%의 피크 부하 절감 효과와 6.02%의 전기요금 절감 효과를 보였다.

Enhanced Particle Swarm Optimization for Short-Term Non-Convex Economic Scheduling of Hydrothermal Energy Systems

  • Jadoun, Vinay Kumar;Gupta, Nikhil;Niazi, K. R.;Swarnkar, Anil
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권5호
    • /
    • pp.1940-1949
    • /
    • 2015
  • This paper presents an Enhanced Particle Swarm Optimization (EPSO) to solve short-term hydrothermal scheduling (STHS) problem with non-convex fuel cost function and a variety of operational constraints related to hydro and thermal units. The operators of the conventional PSO are dynamically controlled using exponential functions for better exploration and exploitation of the search space. The overall methodology efficiently regulates the velocity of particles during their flight and results in substantial improvement in the conventional PSO. The effectiveness of the proposed method has been tested for STHS of two standard test generating systems while considering several operational constraints like system power balance constraints, power generation limit constraints, reservoir storage volume limit constraints, water discharge rate limit constraints, water dynamic balance constraints, initial and end reservoir storage volume limit constraints, valve-point loading effect, etc. The application results show that the proposed EPSO method is capable to solve the hard combinatorial constraint optimization problems very efficiently.