• 제목/요약/키워드: Particle Swarm Algorithm

검색결과 471건 처리시간 0.027초

An Energy- Efficient Optimal multi-dimensional location, Key and Trust Management Based Secure Routing Protocol for Wireless Sensor Network

  • Mercy, S.Sudha;Mathana, J.M.;Jasmine, J.S.Leena
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권10호
    • /
    • pp.3834-3857
    • /
    • 2021
  • The design of cluster-based routing protocols is necessary for Wireless Sensor Networks (WSN). But, due to the lack of features, the traditional methods face issues, especially on unbalanced energy consumption of routing protocol. This work focuses on enhancing the security and energy efficiency of the system by proposing Energy Efficient Based Secure Routing Protocol (EESRP) which integrates trust management, optimization algorithm and key management. Initially, the locations of the deployed nodes are calculated along with their trust values. Here, packet transfer is maintained securely by compiling a Digital Signature Algorithm (DSA) and Elliptic Curve Cryptography (ECC) approach. Finally, trust, key, location and energy parameters are incorporated in Particle Swarm Optimization (PSO) and meta-heuristic based Harmony Search (HS) method to find the secure shortest path. Our results show that the energy consumption of the proposed approach is 1.06mJ during the transmission mode, and 8.69 mJ during the receive mode which is lower than the existing approaches. The average throughput and the average PDR for the attacks are also high with 72 and 62.5 respectively. The significance of the research is its ability to improve the performance metrics of existing work by combining the advantages of different approaches. After simulating the model, the results have been validated with conventional methods with respect to the number of live nodes, energy efficiency, network lifetime, packet loss rate, scalability, and energy consumption of routing protocol.

Ensemble deep learning-based models to predict the resilient modulus of modified base materials subjected to wet-dry cycles

  • Mahzad Esmaeili-Falak;Reza Sarkhani Benemaran
    • Geomechanics and Engineering
    • /
    • 제32권6호
    • /
    • pp.583-600
    • /
    • 2023
  • The resilient modulus (MR) of various pavement materials plays a significant role in the pavement design by a mechanistic-empirical method. The MR determination is done by experimental tests that need time and money, along with special experimental tools. The present paper suggested a novel hybridized extreme gradient boosting (XGB) structure for forecasting the MR of modified base materials subject to wet-dry cycles. The models were created by various combinations of input variables called deep learning. Input variables consist of the number of W-D cycles (WDC), the ratio of free lime to SAF (CSAFR), the ratio of maximum dry density to the optimum moisture content (DMR), confining pressure (σ3), and deviatoric stress (σd). Two XGB structures were produced for the estimation aims, where determinative variables were optimized by particle swarm optimization (PSO) and black widow optimization algorithm (BWOA). According to the results' description and outputs of Taylor diagram, M1 model with the combination of WDC, CSAFR, DMR, σ3, and σd is recognized as the most suitable model, with R2 and RMSE values of BWOA-XGB for model M1 equal to 0.9991 and 55.19 MPa, respectively. Interestingly, the lowest value of RMSE for literature was at 116.94 MPa, while this study could gain the extremely lower RMSE owned by BWOA-XGB model at 55.198 MPa. At last, the explanations indicate the BWO algorithm's capability in determining the optimal value of XGB determinative parameters in MR prediction procedure.

Optimization of cost and mechanical properties of concrete with admixtures using MARS and PSO

  • Benemaran, Reza Sarkhani;Esmaeili-Falak, Mahzad
    • Computers and Concrete
    • /
    • 제26권4호
    • /
    • pp.309-316
    • /
    • 2020
  • The application of multi-variable adaptive regression spline (MARS) in predicting he long-term compressive strength of a concrete with various admixtures has been investigated in this study. The compressive strength of concrete specimens, which were made based on 24 different mix designs using various mineral and chemical admixtures in different curing ages have been obtained. First, The values of fly ash (FA), micro-silica (MS), water-reducing admixture (WRA), coarse and fine aggregates, cement, water, age of samples and compressive strength were defined as inputs to the model, and MARS analysis was used to model the compressive strength of concrete and to evaluate the most important parameters affecting the estimation of compressive strength of the concrete. Next, the proposed equation by the MARS method using particle swarm optimization (PSO) algorithm has been optimized to have more efficient equation from the economical point of view. The proposed model in this study predicted the compressive strength of the concrete with various admixtures with a correlation coefficient of R=0.958 rather than the measured compressive strengths within the laboratory. The final model reduced the production cost and provided compressive strength by reducing the WRA and increasing the FA and curing days, simultaneously. It was also found that due to the use of the liquid membrane-forming compounds (LMFC) for its lower cost than water spraying method (SWM) and also for the longer operating time of the LMFC having positive mechanical effects on the final concrete, the final product had lower cost and better mechanical properties.

Spectrum Allocation and Service Control for Energy Saving Based on Large-Scale User Behavior Constraints in Heterogeneous Networks

  • Yang, Kun;Zhang, Xing;Wang, Shuo;Wang, Lin;Wang, Wenbo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권8호
    • /
    • pp.3529-3550
    • /
    • 2016
  • In heterogeneous networks (HetNets), energy saving is vital for a sustainable network development. Many techniques, such as spectrum allocation, network planning, etc., are used to improve the network energy efficiency (EE). In this paper, micro BSs utilizing cell range expansion (CRE) and spectrum allocation are considered in multi-channel heterogeneous networks to improve EE. Hotspot region is assumed to be covered by micro BSs which can ensure that the hotspot capacity is greater than the average demand of hotspot users. The expressions of network energy efficiency are derived under shared, orthogonal and hybrid subchannel allocation schemes, respectively. Particle swarm optimization (PSO) algorithm is used to solve the optimal ratio of subchannel allocation in orthogonal and hybrid schemes. Based on the results of the optimal analysis, we propose three service control strategies on the basis of large-scale user behaviors, i.e., adjust micro cell rang expansion (AmCRE), adjust micro BSs density (AmBD) and adjust micro BSs transmit power (AmBTP). Both theoretical and simulation results show that using shared subchannel allocation scheme in AmBD strategies can obtain maximal EE with a very small area ratio. Using orthogonal subchannel allocation scheme in AmCRE strategies can obtain maximal EE when area ratio is larger. Using hybrid subchannel allocation scheme in AmCRE strategies can obtain maximal EE when area ratio is large enough. No matter which service control strategy is used, orthogonal spectrum scheme can obtain the maximal hotspot user rates.

기상레이더를 이용한 최적화된 Type-2 퍼지 RBFNN 에코 패턴분류기 설계 (Design of Optimized Type-2 Fuzzy RBFNN Echo Pattern Classifier Using Meterological Radar Data)

  • 송찬석;이승철;오성권
    • 전기학회논문지
    • /
    • 제64권6호
    • /
    • pp.922-934
    • /
    • 2015
  • In this paper, The classification between precipitation echo(PRE) and non-precipitation echo(N-PRE) (including ground echo and clear echo) is carried out from weather radar data using neuro-fuzzy algorithm. In order to classify between PRE and N-PRE, Input variables are built up through characteristic analysis of radar data. First, the event classifier as the first classification step is designed to classify precipitation event and non-precipitation event using input variables of RBFNNs such as DZ, DZ of Frequency(DZ_FR), SDZ, SDZ of Frequency(SDZ_FR), VGZ, VGZ of Frequency(VGZ_FR). After the event classification, in the precipitation event including non-precipitation echo, the non-precipitation echo is completely removed by the echo classifier of the second classifier step that is built as Type-2 FCM based RBFNNs. Also, parameters of classification system are acquired for effective performance using PSO(Particle Swarm Optimization). The performance results of the proposed echo classifier are compared with CZ. In the sequel, the proposed model architectures which use event classifier as well as the echo classifier of Interval Type-2 FCM based RBFNN show the superiority of output performance when compared with the conventional echo classifier based on RBFNN.

증분형 K-means 클러스터링 기반 방사형 기저함수 신경회로망 모델 설계 (Design of Incremental K-means Clustering-based Radial Basis Function Neural Networks Model)

  • 박상범;이승철;오성권
    • 전기학회논문지
    • /
    • 제66권5호
    • /
    • pp.833-842
    • /
    • 2017
  • In this study, the design methodology of radial basis function neural networks based on incremental K-means clustering is introduced for learning and processing the big data. If there is a lot of dataset to be trained, general clustering may not learn dataset due to the lack of memory capacity. However, the on-line processing of big data could be effectively realized through the parameters operation of recursive least square estimation as well as the sequential operation of incremental clustering algorithm. Radial basis function neural networks consist of condition part, conclusion part and aggregation part. In the condition part, incremental K-means clustering algorithms is used tweights of the conclusion part are given as linear function and parameters are calculated using recursive least squareo get the center points of data and find the fitness using gaussian function as the activation function. Connection s estimation. In the aggregation part, a final output is obtained by center of gravity method. Using machine learning data, performance index are shown and compared with other models. Also, the performance of the incremental K-means clustering based-RBFNNs is carried out by using PSO. This study demonstrates that the proposed model shows the superiority of algorithmic design from the viewpoint of on-line processing for big data.

최적 퍼지 직렬형 제어기 설계: Type-2 퍼지 제어기 및 공정경쟁기반 유전자알고리즘을 중심으로 (The Design of Optimized Fuzzy Cascade Controller: Focused on Type-2 Fuzzy Controller and HFC-based Genetic Algorithms)

  • 김욱동;장한종;오성권
    • 전기학회논문지
    • /
    • 제59권5호
    • /
    • pp.972-980
    • /
    • 2010
  • In this study, we introduce the design methodology of an optimized type-2 fuzzy cascade controller with the aid of hierarchical fair competition-based genetic algorithm(HFCGA) for ball & beam system. The ball & beam system consists of servo motor, beam and ball, and remains mutually connected in line in itself. The ball & beam system determines the position of ball through the control of a servo motor. Consequently the displacement change of the position of the moving ball and its ensuing change of the angle of the beam results in the change of the position angle of a servo motor. The type-2 fuzzy cascade controller scheme consists of the outer controller and the inner controller as two cascaded fuzzy controllers. In type-2 fuzzy logic controller(FLC) as the expanded type of type-1 fuzzy logic controller(FLC), we can effectively improve the control characteristic by using the footprint of uncertainty(FOU) of membership function. The control parameters(scaling factors) of each fuzzy controller using HFCGA which is a kind of parallel genetic algorithms(PGAs). HFCGA helps alleviate the premature convergence being generated in conventional genetic algorithms(GAs). We estimated controller characteristic parameters of optimized type-2 fuzzy cascade controller applied ball & beam system such as maximum overshoot, delay time, rise time, settling time and steady-state error. For a detailed comparative analysis from the viewpoint of the performance results and the design methodology, the proposed method for the ball & beam system which is realized by the fuzzy cascade controller based on HFCGA, is presented in comparison with the conventional PD cascade controller based on serial genetic algorithms.

전투실험 분석을 위한 최적화 시뮬레이션 프레임워크 (Optimized Simulation Framework for the Analysis in Battle systems)

  • 강종구;이민규;김선범;황근철;이동훈
    • 한국시뮬레이션학회논문지
    • /
    • 제24권2호
    • /
    • pp.1-9
    • /
    • 2015
  • 다양한 변수들이 존재하는 현대의 전투전장에서는 운용전술에 따라 전투의 양상이 결정되기 때문에 최적화된 운용전술을 도출하는 연구가 필요하다. 기존의 M&S(Modeling & Simulation) 연구에서는 몬테 칼로 실험을 통해 변수들을 분석하는 것이 일반적이다. 그러나 이 방법은 상호 복합적으로 작용하는 다수의 변수들의 모든 조합에 대해 시뮬레이션을 수행하기 때문에, 많은 수행시간이 소요되고 최적의 운용전술 도출을 위한 별도의 분석이 필요하다. 본 논문에서는 최적화 요소를 찾는 전산탐색 기법 중 하나인 DPSO(Discrete binary version of PSO) 알고리즘을 기반으로 하는 최적화 시뮬레이션 프레임워크를 제안하였다. 최적화 시뮬레이션 프레임워크는 짧은 시간 내에 최적화된 운용전술을 도출하기 위하여 설계되었다. 본 연구에서는 아군 수상함이 적 어뢰로부터 회피하는 사례를 적용하여 최적화 시뮬레이션 프레임워크의 탐색 성능을 확인하였다. 이를 통해 최적화 시뮬레이션 프레임워크의 효율성을 제시하였다.

퍼지추론 기반 다항식 RBF 뉴럴 네트워크의 설계 및 최적화 (The Design of Polynomial RBF Neural Network by Means of Fuzzy Inference System and Its Optimization)

  • 백진열;박병준;오성권
    • 전기학회논문지
    • /
    • 제58권2호
    • /
    • pp.399-406
    • /
    • 2009
  • In this study, Polynomial Radial Basis Function Neural Network(pRBFNN) based on Fuzzy Inference System is designed and its parameters such as learning rate, momentum coefficient, and distributed weight (width of RBF) are optimized by means of Particle Swarm Optimization. The proposed model can be expressed as three functional module that consists of condition part, conclusion part, and inference part in the viewpoint of fuzzy rule formed in 'If-then'. In the condition part of pRBFNN as a fuzzy rule, input space is partitioned by defining kernel functions (RBFs). Here, the structure of kernel functions, namely, RBF is generated from HCM clustering algorithm. We use Gaussian type and Inverse multiquadratic type as a RBF. Besides these types of RBF, Conic RBF is also proposed and used as a kernel function. Also, in order to reflect the characteristic of dataset when partitioning input space, we consider the width of RBF defined by standard deviation of dataset. In the conclusion part, the connection weights of pRBFNN are represented as a polynomial which is the extended structure of the general RBF neural network with constant as a connection weights. Finally, the output of model is decided by the fuzzy inference of the inference part of pRBFNN. In order to evaluate the proposed model, nonlinear function with 2 inputs, waster water dataset and gas furnace time series dataset are used and the results of pRBFNN are compared with some previous models. Approximation as well as generalization abilities are discussed with these results.

Hybrid ANN-based techniques in predicting cohesion of sandy-soil combined with fiber

  • Armaghani, Danial Jahed;Mirzaei, Fatemeh;Shariati, Mahdi;Trung, Nguyen Thoi;Shariati, Morteza;Trnavac, Dragana
    • Geomechanics and Engineering
    • /
    • 제20권3호
    • /
    • pp.191-205
    • /
    • 2020
  • Soil shear strength parameters play a remarkable role in designing geotechnical structures such as retaining wall and dam. This study puts an effort to propose two accurate and practical predictive models of soil shear strength parameters via hybrid artificial neural network (ANN)-based models namely genetic algorithm (GA)-ANN and particle swarm optimization (PSO)-ANN. To reach the aim of this study, a series of consolidated undrained Triaxial tests were conducted to survey inherent strength increase due to addition of polypropylene fibers to sandy soil. Fiber material with different lengths and percentages were considered to be mixed with sandy soil to evaluate cohesion (as one of shear strength parameter) values. The obtained results from laboratory tests showed that fiber percentage, fiber length, deviator stress and pore water pressure have a significant impact on cohesion values and due to that, these parameters were selected as model inputs. Many GA-ANN and PSO-ANN models were constructed based on the most effective parameters of these models. Based on the simulation results and the computed indices' values, it is observed that the developed GA-ANN model with training and testing coefficient of determination values of 0.957 and 0.950, respectively, performs better than the proposed PSO-ANN model giving coefficient of determination values of 0.938 and 0.943 for training and testing sets, respectively. Therefore, GA-ANN can provide a new applicable model to effectively predict cohesion of fiber-reinforced sandy soil.