• Title/Summary/Keyword: Particle Pulse

Search Result 162, Processing Time 0.034 seconds

Surface-shape Processing Characteristics and Conditions during Trajectory-driven Fine-particle injection Processing (궤적 구동 미세입자 분사가공 시 표면 형상 가공 특성 및 가공 조건)

  • Lee, Hyoung-Tae;Hwang, Chul-Woong;Lee, Sea-Han;Wang, Duck Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.19-26
    • /
    • 2021
  • In fine-particle injection processing, hard fine particles, such as silicon carbide or aluminum oxide, are injected - using high-pressure air, and a small amount of material is removed by applying an impact to the workpiece by spraying at high speeds. In this study, a two-axis stage device capable of sequence control was developed to spray various shapes, such as circles and squares, on the surface during the micro-particle jetting process to understand the surface-shape micro-particle-processing characteristics. In the experimental device, two stepper motors were used for the linear movement of the two degree-of-freedom mechanism. The signal output from the microcontroller is - converted into a signal with a current sufficient to drive the stepper motor. The stepper motor rotates precisely in synchronization with the pulse-signal input from the outside, eliminating the need for a separate rotation-angle sensor. The major factors of the processing conditions are fine particles (silicon carbide, aluminum oxide), injection pressure, nozzle diameter, feed rate, and number of injection cycles. They were identified using the ANOVA technique on the design of the experimental method. Based on this, the surface roughness of the spraying surface, surface depth of the spraying surface, and radius of the corner of the spraying surface were measured, and depending on the characteristics, the required spraying conditions were studied.

A Study on the Turbulent Characteristics of Rushton Turbine Mixer by Simultaneous Measurement of Velocity and Concentration field with Stereo-PIV/PLIF Technique (Stereo-PIV/LIF의 속도장과 농도장 동시측정 기법을 이용한 러쉬톤 교반기내 난류특성에 관한 연구)

  • Min, Young-Uk;Kim, Yun-Gi;Kim, Kyung-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.365-370
    • /
    • 2004
  • Simultaneous measurement with PLIF(Planar Laser-Induced Fluorescence) and Stereo-PIV(Stereo Particle Image Velocimetry) was performed to investigate the structural characteristics of flow field in Rushton Turbine Mixer. Instantaneous 3D velocity fields are measured by two 2K${\times}$2K CCD cameras focused on an object plane with the angular displacement methods while the concentration fields are obtained through the measurement of the fluorescence intensity of Rhodamine B tracer excited by the second pulse of Nd:Yag laser light. Image distortion due to the camera view-angle is compensated by a mapping function. Finally, the spatial structures of turbulent flow around Rushton turbine were identified by the calculation of synchronized data of the velocity field and concentration field.

Precise Measurement of Beam Energy and Range with TOF and Counter Telescope System

  • Nanbu, Shuya;Kanai, Tatsuaki;Kohno, Toshiyuki;Ohno, Yumiko
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.225-227
    • /
    • 2002
  • In order to improve the accuracy of charged-particle radiation therapy, the beam energy was measured precisely using a TOF-system, and the range using a counter telescope system. A Si detector and a Ge detector were used to estimate the range straggling as a $\Delta$E and an E detector, respectively, because they have good energy resolution and the output pulse heights don't depend on the atomic number of detected particles. The results were compared with the theoretical values by a calculation code.

  • PDF

Sheath analysis for a plasma immersion ion implantation (플라즈마 잠김 이온 주입에 대한 플라즈마 덮개의 해석)

  • 김영권;김영삼;조대근;최은하;조광섭
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.4
    • /
    • pp.381-389
    • /
    • 1998
  • The time variation of an ion current density has been analyzed based on the plasma particle dynamic model for the plasma immersion ion implantation. The implanted ion current density has its maximum value at a particular time after sheath formation, and decays. The influence of the particle collisions, the capacitive time of the substrate, and the pulse formula has been represented on the implanted ion current.

  • PDF

A Study on the Turbulent Characteristics of Rushton Turbine Mixer by Simultaneous Measurement of Velocity and Concentration Field with Stereo-PIV/PLIF Technique (Stereo-PIV/PLIF의 속도장과 농도장 동시측정 기법을 이용한 러쉬톤 교반기내 난류특성에 관한 연구)

  • Min, Young-Uk;Kim, Yun-Gi;Kim, Kyung-Chun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.694-699
    • /
    • 2003
  • Simultaneous measurement with PLIF(Planar Laser-Induced Fluorescence) and Stereo-PIV(Stereoscopic Particle Image Velocimetry) was performed to investigate the structural characteristics of flow field in Rushton Turbine Mixer. Instantaneous 3D velocity fields are measured by two 2K ${\times}$ 2K CCD cameras focused on an object plane with the angular displacement methods while the concentration fields are obtained through the measurement of the fluorescence intensity of Rhodamine B tracer excited by the second pulse of Nd:Yag laser light. Image distortion due to the camera view-angle is compensated by a mapping function. Finally, the spatial structures of turbulent mixing around Rushton turbine were identified by the calculation of cross-correlation fields between the velocity and concentration field.

  • PDF

Ultra-fast meseurement of partial discharge current due to conducting particle in Gas-insulated System (GIS) (가스절연기기 내부의 금속 이물질에 의한 초고속 부분방전량 및 전류 측정)

  • Park, Ki-Jun;Goo, Sun-Geun;Yoon, Jin-Yul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.160-164
    • /
    • 2002
  • A special discharge cell containing a free conducting particle was used to generate the discharges in $SF_6$. The analog bandwidth of the measurement system exceeded 5 GHz. The measured signals were processed to compensate for the response of the measurement system. The discharge current rise time was in the range of 70 ps, while its full-width half-maximum was 120 ps. Single and double current pulses of positive and negative polarities were measured. Likewise, these pulses were compared with the measurement obtained using a conventional partial discharge detector of the IEC60270 type

  • PDF

Direct Analysis of Aerosol Particles by Atomic Emission and Mass Spectrometry

  • Kawaguchi, Hiroshi;Nomizu, Tsutomu;Tanaka, Tomokazu;Kaneco, Satoshi
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.411-418
    • /
    • 1995
  • A method for the direct determination of elemental content in each of aerosol particles by inductively coupled plasma atomic emission (ICP-AES) or mass spectrometry (ICP-MS) is described. This method is based upon the introduction of diluted aerosol into an ICP and the measurement of either the flash emission intensities of an atomic spectral line or ion intensities. A pulse-height analyzer is used for the measurement of the distribution of the elemental content. In order to calibrate the measuring system, monodisperse aerosols are used. The potentials of the method are shown by demonstrating the copper emission signals from the aerosols generated at a small electric switch, a study of the relation between the decreasing rate of particle number density and particle size, and measurements of calcium contents in the individual biological cells.

  • PDF

Expansion behavior of concrete containing different steel slag aggregate sizes under heat curing

  • Shu, Chun-Ya;Kuo, Wen-Ten
    • Computers and Concrete
    • /
    • v.16 no.3
    • /
    • pp.487-502
    • /
    • 2015
  • This study investigated particle expansion in basic oxygen furnace slag (BOF) and desulfurization slag (DSS) after heat curing by using the volume method. Concrete hydration was accelerated by heat curing. The compressive strength, ultrasonic pulse velocity, and resistivity of the concrete were analyzed. Maximum expansion occurred in the BOF and DSS samples containing 0.30-0.60 mm and 0.60-1.18 mm particles, respectively. Deterioration was more severe in the BOF samples. In the slag aggregates for the complete replacement of fine aggregate, severe fractures occurred in both the BOF and DSS samples. Scanning electron microscopy revealed excess CH after curing, which caused peripheral hydration products to become extruded, resulting in fracture.

Particle Formation and Growth in Dielectric Barrier Discharge - Photocatalysts Hybrid Process for SO2 Removal (SO2 제거를 위한 유전체 장벽 방전 - 광촉매 복합 공정에서의 입자 형성과 성장)

  • Nasonova, Anna;Kim, Dong-Joo;Kim, Kyo-Seon
    • Journal of Industrial Technology
    • /
    • v.30 no.A
    • /
    • pp.127-132
    • /
    • 2010
  • We analyzed the effects of several process variables on the $SO_2$ removal and particle growth by the dielectric barrier discharge - photocatalysts hybrid process. In this process, $SO_2$ was converted into the ammonium sulfate ($(NH_4)_2SO_4$) particles. The size and crystallinity of ammonium sulfate particles were examined by using TEM and XRD analysis. The dielectric barrier discharge reactor consisted of two zones: the first is for plasma generation and the second is for ammonium sulfate particles formation and growth. The first zone of reactor was filled with glass beads as a dielectric material. To enhance $SO_2$ removal process, the $TiO_2$ photocatalysts were coated on glass beads by dip-coating method. As the voltage applied to the plasma reactor or the pulse frequency of applied voltage increases, the $SO_2$ removal efficiency increases. Also as the initial concentration of $SO_2$ decreases or as the residence time increases, the $SO_2$ removal efficiency increases. $(NH_4)_2SO_4$ particles continue to grow by particle coagulation and surface reaction, moving inside the reactor. Larger particles in site are produced according to the increase of residence time or $SO_2$ concentrations.

  • PDF

Effect of Pulse Plating on Hardness of Brass-Alumina Nanocomposite (펄스전류인가가 황동-알루미나 나노복합도금층의 경도에 미치는 영향)

  • 오영주;안재우;안종관;이만승
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.3
    • /
    • pp.158-164
    • /
    • 2002
  • Nanocomposites consisting of a nanocrystalline brass matrix (grain size ; 20-100nm) with sub-micron sized Al2O3 particles (60-200nm) were prepared by pulsed current electrodeposition. The microhardness of the nanocomposite with a grain size of 90-100nm was approximately 1.7 times higher than that of a comparable electrodeposit with no particles. However, significant variations in microhardness were not observed between the nanocomposites with grain sizes of 20 nm and the comparable electrodeposit.