• Title/Summary/Keyword: Particle Number

Search Result 1,498, Processing Time 0.029 seconds

Comparison of particle size distribution and particle number concentration measured by APS 3321 and Dust Monitor 1.108 (APS 3321과 Dust Monitor 1.108을 이용한 입자 크기분포 및 수농도 측정결과 비교)

  • Lim, Kyoung-Soo;Park, Hyun-Seol
    • Particle and aerosol research
    • /
    • v.5 no.2
    • /
    • pp.63-70
    • /
    • 2009
  • The size distribution and number concentration of atmospheric aerosol were measured and compared using APS 3321 and Dust Monitor 1.108. The particle size distribution and number concentration measured by two devices were also compared at a particle generation system of standard PSL and fly ash. The number concentration of atmospheric aerosol measured by APS was higher than that by Dust Monitor in particle size range of less than $3.0{\mu}m$, but there was good accordance between them in particle size range of over $3.0{\mu}m$. In the particle generation system of PSL and fly ash, different measurement results were shown because the particle concentration was higher than that of atmospheric aerosol. The number concentration measured by Dust Monitor was higher than that by APS in most particle size ranges. However, the peak concentration of PSL particles measured by Dust Monitor was lower than that by APS. The difference of the collection efficiency in a scrubber by APS and Dust Monitor measurement was less than 10%, but in the particle size of $1.5{\mu}m$, it was over 20%.

  • PDF

New Evaluation Method for The Particle Size and Morphology Via Change of Ground Particle During a Grinding Process (분쇄공정에서 변화된 입자크기 및 형상특성의 평가방법에 관한 새로운 제언)

  • Choi, Heekyu;Lee, Jehyun;Choi, Junewoo
    • Particle and aerosol research
    • /
    • v.9 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • New evaluation method for the particle size and morphology via change of ground particle during a grinding process was investigated. The grinding experiments were carried by a planetary ball mill. The relationship between the particle outline of the scanning electron microscopy photograph and measurement line, the measurement contact number was evaluated. The value of contact number decreased with the increase in the particle size of the ground sample, and varied with the experimental conditions. The value of contact number, which is related to the particle size of the raw sample, changed at the various experimental conditions.

The effect of dynamic operating conditions on nano-particle emissions from a light-duty diesel engine applicable to prime and auxiliary machines on marine vessels

  • Lee, Hyungmin;Jeong, Yeonhwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.4
    • /
    • pp.403-411
    • /
    • 2012
  • This study presents the nano-sized particle emission characteristics from a small turbocharged common rail diesel engine applicable to prime and auxiliary machines on marine vessels. The experiments were conducted under dynamic engine operating conditions, such as steady-state, cold start, and transient conditions. The particle number and size distributions were analyzed with a high resolution PM analyzer. The diesel oxidation catalyst (DOC) had an insignificant effect on the reduction in particle number, but particle number emissions were drastically reduced by 3 to 4 orders of magnitude downstream of the diesel particulate filter (DPF) at various steady conditions. Under high speed and load conditions, the particle filtering efficiency was decreased by the partial combustion of trapped particles inside the DPF because of the high exhaust temperature caused by the increased particle number concentration. Retarded fuel injection timing and higher EGR rates led to increased particle number emissions. As the temperature inside the DPF increased from $25^{\circ}C$ to $300^{\circ}C$, the peak particle number level was reduced by 70% compared to cold start conditions. High levels of nucleation mode particle generation were found in the deceleration phases during the transient tests.

An Experimental Study on Enhancement of the Filter Efficiency by the Image Effect of Charged Particle (대전된 입자의 영상효과에 의한 필터효율 향상에 관한 실험적 연구)

  • Lee, Chang-Sun;Jeong, Hae-Young;Kim, Sang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.760-768
    • /
    • 2000
  • Filter efficiency of electrically charged particle in uncharged fibrous filter was measured. In previous studies, the effect of charged particle on filter efficiency was investigated but there was difficulty in measuring of image effect that is appeared at the charged small particle. We could easily measure the image effect with charging small particles by photoelectric charging. The spark discharge aerosol generator and a differential mobility analyzer (DMA) were used to generate sub-micron monodisperse particles (${\leq}200$ nm). The generated particles were charged in photoelectric charging process using ultraviolet lamp and electric field. The filter efficiency of the charged particles, classified by another DMA, was measured in filter tester using a condensation nucleus counter (CNC) as function of particle diameter, particle charge and airflow velocity. It is shown that the filter efficiency increases with increasing charge number of the particle and is affected by particle size and flow velocity. Single fiber filter efficiency mainly depends on image force parameter and peclet number. The peclet number was not considered at previous other papers. We propose a modi fied experimental correlation as function of image force parameter and peclet number.

A Study on the Nano-particles Emission Exhausted from Diesel Passenger Vehicle According to Using Biodiesel (바이오디젤 사용에 따른 경유승용차의 나노입자 배출특성 연구)

  • Kwon, Sang-Il;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.12 no.1
    • /
    • pp.65-70
    • /
    • 2007
  • This paper is to investigate the characteristics of exhaust emissions and nano-particle emission from diesel passenger vehicle according to using biodiesel fuel as an alternative fuel. In this work, the particulate matters (PM) of exhaust emissions in diesel engine were investigated by number of particles and mass measurement. The mass of the total PM was measured using the standard gravimetric measurement method, the total number concentrations were measured on a ECE15+EUDC driving cycle using Condensation Particle Counter (CPC). Total PM emission was reduced $2{\sim}38%$ and number concentration was reduced $1{\sim}27%$ according to increasing blended ratio of biodiesel with diesel fuel. Total PM emission was reduced more than particle number emission because volatile particles were measured in total PM but were not measured in particle number emissions.

  • PDF

Comparison of Dustiness of Eleven Nanomaterials using Voltex Shaker Method (볼텍스쉐이커를 이용한 11개 나노물질의 분진날림 비교)

  • Lee, Naroo;Park, Jinwoo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.3
    • /
    • pp.273-282
    • /
    • 2018
  • Objectives: Dustiness of nanomaterials is considered as exposure index of essential material. Research on dustiness of nanomaterial is needed to control exposure in workplaces. Method: Dustiness measurement using vortex shaker were installed in the laboratory. Nanomaterials, 1 g, was put in the glass test tube and shaked using vortex shaker. Aerosol dispersed was measured using scanning mobility particle sizer(SMPS) and optical particle counter(OPC). Mass concentration using PVC filter and cassette was measured and TEM grid sampling was conducted. Total particle concentration and size distribution were calculated. Image and chemical composition of particles in the air were observed using transmission electron microscopy and energy dispersive X-ray spectrometer. Eleven different test nanomaterials were used in the study. Results: Rank of mass concentration and particle number concentration were coincided in most cases. Rank of nanomateirals with low concentration were not coincided. Two types of fumed silica had the highest mass concentration and particle number concentration. Indium tin oxide, a mixture of indium oxide and tin oxide, had high mass concentration and particle number concentration. Indium oxide had very low mass concentration and particle number concentration. Agglomeration of nanoparticles in the air were observed in TEM analysis and size distribution. In this study, mass concentration and particle number concentration were coincided and two index can be used together. The range of dustiness in particle number concentration were too wide to measure in one method. Conclusion: Particle number concentration ranged from low concentration to high concentration depend on type of nanomaterial, and varied by preparation and amount of nanomaterial used. Further study is needed to measure dustiness of all nanomaterial as one reference method.

Urban Aerosol Number Concentration and Scattering Coefficient in Seoul, Korea, during Winter (서울지역 겨울철 대기 에어로졸의 수 농도 및 산란계수 분석)

  • Lee, Hyun-Hye;Kim, Jin Young;Lee, Seung-Bok;Bae, Gwi-Nam;Yum, Seong Soo
    • Particle and aerosol research
    • /
    • v.6 no.2
    • /
    • pp.91-103
    • /
    • 2010
  • Size-segregated number concentration and scattering coefficient of urban aerosols were measured using an SMPS (scanning mobility particle sizer) and a nephelometer, respectively in Seoul, Korea, during the winter season of 2003. The average number concentrations of ultrafine particles (20~100 nm) and accumulation mode particles (100~600 nm) were $2,170\;particles\;cm^{-3}$ and $1,521\;particles\;cm^{-3}$, respectively. The scattering coefficient at the wavelength of 550 nm ranged from $62.6Mm^{-1}$ to $330.1Mm^{-1}$ and average value was $163.4Mm^{-1}$. The peak concentrations of ultrafine particles and accumulation mode particles were simultaneously recorded between 6:00 and 9:00 A.M., indicating the effect of vehicle emissions which are major air pollution sources in the urban atmosphere. On average, the number concentration of ultrafine particles was 1.4 times higher than that of accumulation mode particles, although it was a little higher during the morning peak time. The variation of aerosol scattering coefficient was in good agreement with that of accumulation mode particle number concentration rather than that of ultrafine particle number concentration.g coefficient was in good agreement with that of accumulation mode particle number concentration rather than that of ultrafine particle number concentration.

Nano Particle Emission Charataristics of Biodiesel (바이오디젤의 미세입자 배출특성)

  • Song, Hoyoung;Lee, Minho;Kim, Jaigueon;Jung, Choongsub
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.199.2-199.2
    • /
    • 2010
  • Biodiesels are well-known as alternative fuels. also we know that biodiesels increase NOx and reduce PM(Particulate Matter) by previous many studies. But PM in most these studies was considered about the mass. In this study, We have performed experimental test for PM and exhaust emission by mixed ratio of biodiesel in heavy duty diesel engine. PM was investigated by The nano particle number and the mass. The mass of PM was evaluated by using the standard gravimetric method, The number of PM was evaluated by using the EEPS(Engine Exhaust Particle Sizer), on the ESC(European Steady Cycle) mode. Sampled gas through dilutor was directly extracted from tail pipe and EEPS measured diluted exhaust gas. Biodiesel is made up of used cooking oil. Diesel as base fuel was sold on market and contains 2% biodiesel. The mass of PM was reduced 10% and the nano particle number was increased 5%. The particle number less than 40nm was increased, but the particle number more than 40nm is decreased.

  • PDF

Particle Beam Focusing Using Radiation Pressure (광압을 이용한 입자빔 집속)

  • Kim, Sang-Bok;Park, Hyung-Ho;Kim, Sang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1505-1509
    • /
    • 2004
  • A novel technique for fine particle beam focusing under the atmospheric pressure is introduced using a radiation pressure assisted aerodynamic lens. To introduce the radiation pressure in the aerodynamic focusing system, a 25 mm plano-convex lens having 2.5 mm hole at its center is used as an orifice. The particle beam width is measured for various laser power, particle size, and flow velocity. In addition, the effect of the laser characteristics on the beam focusing is evaluated comparing an Ar-Ion continuous wave laser and a pulsed Nd-YAG laser. For the pure aerodynamic focusing system, the particle beam width was decreased as increasing particle size and Reynolds number. For the particle diameter of 0.5 ${\mu}m$, the particle beam was broken due to the secondary flow at Reynolds number of 694. Using the Ar-Ion CW laser, the particle beam width becomes smaller than that of the pure aerodynamic focusing system about 16 %, 11.4 % and 9.6 % for PSL particle size of 2.5 ${\mu}m$, 1.0 ${\mu}m$, and 0.5 ${\mu}m$ respectively at the Reynolds number of 320. Particle beam width was minimized around the laser power of 0.2 W. However, as increasing the laser power higher than 0.4 W, the particle beam width was increased a little and it approached almost a constant value which is still smaller than that of the pure aerodynamic focusing system. The radiation pressure effect on the particle beam width is intensified as Reynolds number decreases or particle size increases relatively. On the other hand, using 30 Hz pulsed Nd-YAG laser, the effect of the radiation pressure on the particle beam width was not distinct unlike Ar-Ion CW laser.

  • PDF

Particle emission characteristics of gasoline and bio ethanol blend in the engine and vehicle mode test (가솔린과 바이오 에탄올 혼합 연료의 엔진 및 차량 모드 주행시의 입자상 물질 배출 특성)

  • Ko, A-Hyun;Lee, Hyung-Min;Choi, Kwan-Hee;Park, Sim-Soo;Lee, Young-Jae
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3102-3107
    • /
    • 2008
  • This paper was focused on the particulate matter (PM) on the gasoline and bio ethanol. Bio ethanol as a clean fuel is considered one of the alternative fuels that decreased the PM emission from the vehicle. Particle formation in SI engine was depended on the fuel and engine operating condition. In this paper, Particle number concentration behaviors were analyzed by DMS500 (Differential Mobility Spectrometer) and CPC (Condensation Particle Counter) instrument which was recommended by PMP (Particle Measurement Programme). Particle emissions were measured with various engine operating variables such as air excess ratio ($\lambda$), spark timing and intake valve opening (IVO) at part load condition. In vehicle test, the number of particulate matter was analyzed with golden particle measurement system, which was consist of CVS (Constant Volume Sampler), particle number counter and particle number diluter.

  • PDF