• 제목/요약/키워드: Particle Morphology

검색결과 772건 처리시간 0.025초

입자의 형상에 따른 열영동 영향에 대한 실험적 연구 (Experimental Study on Thermophoretic Particle Deposition for an Agglomerated and Non-Agglomerated Particles)

  • 최광열;윤진욱;안강호
    • 대한기계학회논문집B
    • /
    • 제28권7호
    • /
    • pp.741-746
    • /
    • 2004
  • Agglomerated and non-agglomerated SiO$_2$ particles are synthesized in a furnace by oxidation of TEOS vapor. These polydispersed particles are classified with DMA to extract particles. Then these particles are introduced into a thermal precipitator through the ESP(Electrostatic Precipitator) to investigate the themophoretic particle deposition using CNCs(Condensation Nuclei Counter). The efficiency of themophoretic particle deposition according to agglomerated and non-agglomerated particles in the thermal precipitator has been studied as a function of particle size and TEOS mole concentration using monodisperse particles classified by DMA. The results show that the particle deposition efficiency decreases as TEOS mole concentration increases and particle size increases. Thereffre, it is concluded that the thermophoretic deposition efficiency is dependent of the particle morphology.

Effect of Poly(butyl acrylate)-Poly(methyl methacrylate) Rubber Particle Texture on the Toughening Behavior of Poly(methyl methacrylate)

  • Chung, Jae-Sik;Park, Kyung-Ran;Wu, Jong-Pyo;Han, Chang-Sun;Lee, Chan-Hong
    • Macromolecular Research
    • /
    • 제9권2호
    • /
    • pp.122-128
    • /
    • 2001
  • Monodisperse composite latex particles with size of ca. 300 nm, which consist ofn-butyl acrylate as a soft phase and methyl methacrylate as a hard phase with different morphology, were synthesized by seeded multi-stage emulsion polymerization. Three types of composite latex particles including random-, core/shell-, and gradient-type particles were obtained by using different monomer feeding methods during semi-batch emulsion polymerization. Effect of poly(butyl acrylate)-poly(methyl methacrylate) rubber particle morphology on the mechanical and rheological properties of rubber toughened poly(methyl methacrylate) was investigated. Among three different rubber particles, the gradient-type rubber particle showed better toughening effect than others. No significant variation of rheological property of poly(methyl methacrylate)/rubber blends was observed for the different rubber particle morphology.

  • PDF

기계윤활 운동면의 작동상태 진단을 위한 마멸분 해석 (Analysis of Wear Debris for Machine Condition Diagnosis of the Lubricated Moving Surface)

  • 서영백;박흥식;전태옥
    • 대한기계학회논문집A
    • /
    • 제21권5호
    • /
    • pp.835-841
    • /
    • 1997
  • Microscopic examination of the morphology of wear debris is an accepted method for machine condition and fault diagnosis. However wear particle analysis has not been widely accepted in industry because it is dependent on expert interpretation of particle morphology and subjective assessment criteria. This paper was undertaken to analyze the morphology of wear debris for machine condition diagnosis of the lubricated moving surfaces by image processing and analysis. The lubricating wear test was performed under different sliding conditions using a wear test device made in our laboratory and wear testing specimen of the pin-on-disk-type was rubbed in paraffine series base oil. In order to describe characteristics of debris of various shape and size, four shape parameters (50% volumetric diameter, aspect, roundness and reflectivity) have been developed and outlined in the paper. A system using such techniques promises to obviate the need for subjective, human interpretation of particle morphology in machine condition monitoring, thus to overcome many of the difficulties in current methods and to facilitate wider use of wear particle analysis in machine condition monitoring.

구간해석방법을 통한 새로운 비구형 입자성장해석 모델 (A New Model for the Analysis of Non-spherical Particle Growth Using the Sectional Method)

  • 정재인;최만수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.416-421
    • /
    • 2000
  • We have developed a simple model for describing the non-spherical particle growth phenomena using modified 1-dimensional sectional method. In this model, we solve simultaneously particle volume and surface area conservation sectional equations which consider particles' irregularities. From the correlation between two conserved properties of sections, we can predict the evolution of the aggregates' morphology. We compared this model with a simple monodisperse-assumed model and more rigorous two dimensional sectional model. For the comparison, we simulated silica and titania particle formation and growth in a constant temperature reactor environment. This new model shows a good agreement with the detailed two dimensional sectional model in total number concentration, primary particle size. The present model can also successfully predict particle size distribution and morphology without costing very heavy computation load and memory needed for the analysis of two dimensional aerosol dynamics.

  • PDF

반고상 A356 합금 슬러리의 미세조직에 따른 유동특성에 관한 연구 (Effects of Microstructure Morphology on Fluid Flow Characteristics of A356 Commercial Alloy in Semi-Solid Slurry)

  • 김재민;이승훈;홍준표
    • 한국주조공학회지
    • /
    • 제25권6호
    • /
    • pp.240-248
    • /
    • 2005
  • The rheocasting characteristics are strongly influenced by the microstructural morphology such as particle size, form factor and contiguity. In this study, the effect of structural morphology on fluid flow characteristics of A356 semi-solid alloy was investigated with a vacuum suction fluidity test. Semi-solid metal slurry was made by the mechanical stirring, the liquidus casting, and H-NCM to be analysed. H-NCM could obtain uniform and fine globular microstructures of 0.9 form factor and 55 ${\mu}m$ particle size. Inoculation was found to be effective for reducing particle size, however, for H-NCM it should be avoided due to the cause of increasing contiguity. The fluidity test indicated that the non-stirring method had higher fluidity and smaller liquid segregation in the same solid faction of 0.4 than the stirring method, for smaller particle size and higher form factor. It was observed that liquid segregation decreased as the particle size is smaller and form factor is higher. The results of die-casting experiment were a good agreement with those of fluidity test.

컴퓨터 영상처리에 의한 윤활시스템의 상태진단

  • 서영백;박흥식;전태옥;이충엽
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1997년도 제25회 춘계학술대회
    • /
    • pp.224-231
    • /
    • 1997
  • Microscopic examination for the morphological estimation of wear debris on the oil-lubrcated moving system is an accepted method for machine condition and fault diagnosis. However wear particle anaysis has not been widely accepted industry because it is dependent on expert interpretation of particle morphology and relies on subjective assessment criteria. This paper was undertaken to estimate the morphology of wear debris on the oil-lubricated movig system by computer image analysis. The wear test was performed under different sliding conditions using a wear test device made in our laboratory and wear testing specimen of the pin-on-disk-type was rubbed in pararline series base oil. In order to describe characteristics of debris of various shape and size, four shape parameters (50% volumetric diameter, aspect, roundness and reflectivity) have been developed and outlined in the paper. A system using such techniques promises to obviate the need for subjective, human interpretation of particle morphology in machine condition monitoring.

  • PDF

차원해석에 의한 기계습동재료의 마멸분 형상특징 분석 (Morphological. Analysis of Wear Particles by Fractal Dimension)

  • 원두원;전성재;조연상;김동호;박흥식
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제34회 추계학술대회 개최
    • /
    • pp.53-58
    • /
    • 2001
  • Fractal dimension is the method to measure the roughness and the irregularity of something that cannot be defined obviously by Euclidean dimension. And the analysis method of this dimension don't need perfect, accurate boundary and color like analysis lot diameter, perimeter, aspect or reflectivity of wear particles or surface. If we arranged the morphological characteristic of various wear particle by using the characteristic of fractal dimension, it might be very efficient to the diagnosis of driving condition. In order to describe morphology of various wear particle, the wear test was carried out under friction experimental conditions. And fractal descriptors was applied to boundary and surface of wear particle with image processing system. These descriptors to analyze shape and surface wear particle are boundary fractal dimension and surface fractal dimension.

  • PDF

새로운 비구형 입자 성장 해석 모델 (A New Model for the Analysis of Non-Spherical Particle Growth)

  • 정재인;최만수
    • 대한기계학회논문집B
    • /
    • 제24권7호
    • /
    • pp.1020-1027
    • /
    • 2000
  • A simple model for describing the non-spherical particle growth phenomena has been developed. In this model, we solve simultaneously particle volume and surface area conservation sectional equations that consider particles' non-sphericity. From the correlation between two conserved properties of sections, we can predict the evolution of the aggregates' morphology. This model was compared with a simple monodisperse-assumed model and more rigorous two-dimensional sectional model. For comparison, formation and growth of silica particles have been simulated in a constant temperature reactor environment. This new model showed good agreement with the detailed two-dimensional sectional model in total number concentration and primary particle size. The present model successfully predicted particle size distribution and morphology without costing very heavy computation load and memory needed for the analysis of two dimensional aerosol dynamics.

Effects of Mechanically Activated Milling and Calcination Process on the Phase Stability and Particle Morphology of Monoclinic Zirconia Synthesized by Hydrolysis of ZrOCl2 Solution

  • Lee, Young-Geun;Ur, Soon-Chul;Mahmud, Iqbal;Yoon, Man-Soon
    • 한국재료학회지
    • /
    • 제23권10호
    • /
    • pp.543-549
    • /
    • 2013
  • The purpose of this paper was to investigate the effect of a high-energy milling (HEM) process on the particle morphology and the correlation between a thermal treatment and tetragonal/monoclinic nanostructured zirconia powders obtained by a precipitation process. To eliminate chloride residue ions from hydrous zirconia, a modified washing method was used. It was found that the used washing method was effective in removing the chloride from the precipitated gel. In order to investigate the effect of a pre-milling process on the particle morphology of the precipitate, dried $Zr(OH)_4$ was milled using a HEM machine with distilled water. The particle size of the $Zr(OH)_4$ powder exposed to HEM reduced to 100~150 nm, whereas that of fresh $Zr(OH)_4$ powder without a pre-milling process had a large and irregular size of 100 nm~1.5 ${\mu}m$. Additionally, modified heat treatment process was proposed to achieve nano-sized zirconia having a pure monoclinic phase. It was evident that two-step calcining process was effective in perfectly eliminating the tetragonal phase, having a small average particle of ~100 nm with good uniformity compared to the sample calcined by a single-step process, showing a large average particle size of ~300 nm with an irregular particle shape and a broad particle size distribution. The modified method is considered to be a promising process for nano-sized zirconia having a fully monoclinic phase.

세 가지 매체형 분쇄기를 이용한 분쇄공정에서 다양한 실험 조건에 대한 입자형상변화 (Particle Morphology via Change of Ground Particle for Various Experimental Conditions During a Grinding Process by Three Kinds of Media Mills)

  • 사꾸라기시오리;보르암갈란;이재현;최희규
    • 한국입자에어로졸학회지
    • /
    • 제11권1호
    • /
    • pp.9-19
    • /
    • 2015
  • This study investigated the effects of ball mill operation condition on the morphology of raw powders in the dry-type milling process using three types of ball mills traditional ball mill, stirred ball mill and planetary ball mill. Furthermore, since spherical powders offer the best combination of high hardness and high density, the optimum milling condition to produce sphere-shaped powders was studied. The applied rotation speed ranged from 200rpm (low rotation speed) to 700rpm (high rotation speed). The used ball size ranged from 1mm to 5mm. The metal powder morphology was studied using SEM, XRD and PSA. The aimed spherical powders could be obtained under the optimum experimental conditions: traditional ball mill(200rpm, 1mm ball), planetary ball mill (500rpm, 1mm ball) and also planetary ball mill (700rpm, 1 and 3 mm ball). The results show to the development of new material using spherical type copper powder/CNT composites for air-craft and automotive applications.